Skip to content

Commit f92782d

Browse files
authored
Merge branch 'master' into feature-3563-add-lambda-func-parameters
2 parents 7f1b945 + 43e3571 commit f92782d

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

55 files changed

+3887
-197
lines changed

CHANGELOG.md

Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,65 @@
11
# Changelog
22

3+
## v2.138.0 (2023-03-13)
4+
5+
### Features
6+
7+
* Jumpstart training metrics
8+
9+
### Bug Fixes and Other Changes
10+
11+
* Add new region support for MX, PT, TF on SM Training
12+
13+
## v2.137.0 (2023-03-10)
14+
15+
### Features
16+
17+
* support JSON for input dataset and model output
18+
19+
### Bug Fixes and Other Changes
20+
21+
* Wait on describe for tag propagation
22+
* Extracted profile_name directly from sagemaker.Session if None
23+
* Avoid double encoding to JSON in InferenceRecommenderMixin
24+
* RepackStep must use the same KMS key as the Model
25+
26+
## v2.136.0 (2023-03-09)
27+
28+
### Features
29+
30+
* with_feature_group [feature_store]
31+
* Djl Large Model Support
32+
* Decouple model.right_size() from model registry
33+
34+
### Bug Fixes and Other Changes
35+
36+
* Fix integration test error in test_default_right_size_and_deploy_unregistered_base_model
37+
* Add djl 0.21.0 dlc images
38+
39+
### Documentation Changes
40+
41+
* Torchrun gpu support documentation change
42+
43+
## v2.135.1.post0 (2023-03-02)
44+
45+
### Documentation Changes
46+
47+
* update feature store dataset builder docs
48+
49+
## v2.135.1 (2023-03-01)
50+
51+
### Bug Fixes and Other Changes
52+
53+
* Revert back to stable apache-airflow-providers-amazon from 7.2.1 to 4.0.0.
54+
* Typo in graviton algos
55+
* build(deps): bump apache-airflow-providers-amazon from 4.0.0 to 7.2.1 in /requirements/extras
56+
* Support cloning private repo using ssh key
57+
* Create a default SageMaker Session inside FeatureGroup class
58+
59+
### Documentation Changes
60+
61+
* fix typo in README
62+
363
## v2.135.0 (2023-02-23)
464

565
### Features

README.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ To run the unit tests with tox, run:
126126

127127
tox tests/unit
128128

129-
**Integrations tests**
129+
**Integration tests**
130130

131131
To run the integration tests, the following prerequisites must be met
132132

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.135.1.dev0
1+
2.138.1.dev0

doc/amazon_sagemaker_featurestore.rst

Lines changed: 97 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -380,6 +380,102 @@ location for the data set to be saved there.
380380
From here you can train a model using this data set and then perform
381381
inference.
382382

383+
.. rubric:: Using the Offline Store SDK: Getting Started
384+
:name: bCe9CA61b79
385+
386+
The Feature Store Offline SDK provides the ability to quickly and easily
387+
build ML-ready datasets for use by ML model training or pre-processing.
388+
The SDK makes it easy to build datasets from SQL join, point-in-time accurate
389+
join, and event range time frames, all without the need to write any SQL code.
390+
This functionality is accessed via the DatasetBuilder class which is the
391+
primary entry point for the SDK functionality.
392+
393+
.. code:: python
394+
395+
from sagemaker.feature_store.feature_store import FeatureStore
396+
397+
feature_store = FeatureStore(sagemaker_session=feature_store_session)
398+
399+
.. code:: python
400+
401+
base_feature_group = identity_feature_group
402+
target_feature_group = transaction_feature_group
403+
404+
You can create dataset using `create_dataset` of feature store API.
405+
`base` can either be a feature group or a pandas dataframe.
406+
407+
.. code:: python
408+
409+
result_df, query = feature_store.create_dataset(
410+
base=base_feature_group,
411+
output_path=f"s3://{s3_bucket_name}"
412+
).to_dataframe()
413+
414+
If you want to join other feature group, you can specify extra
415+
feature group using `with_feature_group` method.
416+
417+
.. code:: python
418+
419+
dataset_builder = feature_store.create_dataset(
420+
base=base_feature_group,
421+
output_path=f"s3://{s3_bucket_name}"
422+
).with_feature_group(target_feature_group, record_identifier_name)
423+
424+
result_df, query = dataset_builder.to_dataframe()
425+
426+
.. rubric:: Using the Offline Store SDK: Configuring the DatasetBuilder
427+
:name: bCe9CA61b80
428+
429+
How the DatasetBuilder produces the resulting dataframe can be configured
430+
in various ways.
431+
432+
By default the Python SDK will exclude all deleted and duplicate records.
433+
However if you need either of them in returned dataset, you can call
434+
`include_duplicated_records` or `include_deleted_records` when creating
435+
dataset builder.
436+
437+
.. code:: python
438+
439+
dataset_builder.include_duplicated_records()
440+
dataset_builder.include_deleted_records()
441+
442+
The DatasetBuilder provides `with_number_of_records_from_query_results` and
443+
`with_number_of_recent_records_by_record_identifier` methods to limit the
444+
number of records returned for the offline snapshot.
445+
446+
`with_number_of_records_from_query_results` will limit the number of records
447+
in the output. For example, when N = 100, only 100 records are going to be
448+
returned in either the csv or dataframe.
449+
450+
.. code:: python
451+
452+
dataset_builder.with_number_of_records_from_query_results(number_of_records=N)
453+
454+
On the other hand, `with_number_of_recent_records_by_record_identifier` is
455+
used to deal with records which have the same identifier. They are going
456+
to be sorted according to `event_time` and return at most N recent records
457+
in the output.
458+
459+
.. code:: python
460+
461+
dataset_builder.with_number_of_recent_records_by_record_identifier(number_of_recent_records=N)
462+
463+
Since these functions return the dataset builder, these functions can
464+
be chained.
465+
466+
.. code:: python
467+
468+
dataset_builder
469+
.with_number_of_records_from_query_results(number_of_records=N)
470+
.include_duplicated_records()
471+
.with_number_of_recent_records_by_record_identifier(number_of_recent_records=N)
472+
.to_dataframe()
473+
474+
There are additional configurations that can be made for various use cases,
475+
such as time travel and point-in-time join. These are outlined in the
476+
Feature Store `DatasetBuilder API Reference
477+
<https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#dataset-builder>`__.
478+
383479
.. rubric:: Delete a feature group
384480
:name: bCe9CA61b78
385481

@@ -395,3 +491,4 @@ The following code example is from the fraud detection example.
395491
396492
identity_feature_group.delete()
397493
transaction_feature_group.delete()
494+

doc/frameworks/djl/index.rst

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
########################
2+
Deep Java Library (DJL)
3+
########################
4+
5+
A managed environment for inference using Deep Java Library (DJL) on Amazon SageMaker.
6+
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
7+
8+
.. toctree::
9+
:maxdepth: 1
10+
11+
using_djl
12+
13+
.. toctree::
14+
:maxdepth: 2
15+
16+
sagemaker.djl_inference
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
DJL Classes
2+
=================
3+
4+
5+
DJLModel
6+
---------------------------
7+
8+
.. autoclass:: sagemaker.djl_inference.model.DJLModel
9+
:members:
10+
:undoc-members:
11+
:show-inheritance:
12+
13+
DeepSpeedModel
14+
---------------------------
15+
16+
.. autoclass:: sagemaker.djl_inference.model.DeepSpeedModel
17+
:members:
18+
:undoc-members:
19+
:show-inheritance:
20+
21+
HuggingFaceAccelerateModel
22+
---------------------------
23+
24+
.. autoclass:: sagemaker.djl_inference.model.HuggingFaceAccelerateModel
25+
:members:
26+
:undoc-members:
27+
:show-inheritance:
28+
29+
DJLPredictor
30+
---------------------------
31+
32+
.. autoclass:: sagemaker.djl_inference.model.DJLPredictor
33+
:members:
34+
:undoc-members:
35+
:show-inheritance:

0 commit comments

Comments
 (0)