@@ -275,8 +275,6 @@ def download_data(self, path, bucket, key_prefix="", extra_args=None):
275
275
download operation. Please refer to the ExtraArgs parameter in the boto3
276
276
documentation here:
277
277
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-example-download-file.html
278
-
279
- Returns:
280
278
"""
281
279
# Initialize the S3 client.
282
280
if self .s3_client is None :
@@ -1563,8 +1561,6 @@ def auto_ml(
1563
1561
definitions. If True, AutoML.list_candidates() cannot be called. Default: False.
1564
1562
tags ([dict[str,str]]): A list of dictionaries containing key-value
1565
1563
pairs.
1566
-
1567
- Returns:
1568
1564
"""
1569
1565
auto_ml_job_request = {
1570
1566
"AutoMLJobName" : job_name ,
@@ -2791,6 +2787,7 @@ def describe_model(self, name):
2791
2787
2792
2788
Args:
2793
2789
name (str): The name of the SageMaker model.
2790
+
2794
2791
Returns:
2795
2792
dict: A dictionary response with the model description.
2796
2793
"""
@@ -2878,11 +2875,12 @@ def create_endpoint_config_from_existing(
2878
2875
):
2879
2876
"""Create an Amazon SageMaker endpoint configuration from an existing one.
2880
2877
2881
- IT also updates any values that were passed in.
2878
+ It also updates any values that were passed in.
2882
2879
The endpoint configuration identifies the Amazon SageMaker model (created using the
2883
2880
``CreateModel`` API) and the hardware configuration on which to deploy the model. Provide
2884
2881
this endpoint configuration to the ``CreateEndpoint`` API, which then launches the
2885
2882
hardware and deploys the model.
2883
+
2886
2884
Args:
2887
2885
new_config_name (str): Name of the Amazon SageMaker endpoint configuration to create.
2888
2886
existing_config_name (str): Name of the existing Amazon SageMaker endpoint
0 commit comments