Skip to content

breaking: refactor Predictor attribute endpoint to endpoint_name #1632

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jun 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/amazon_sagemaker_model_monitoring.rst
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Using ``DefaultMonitor.create_monitoring_schedule()``, you can create a model mo

my_monitor.create_monitoring_schedule(
monitor_schedule_name='my-monitoring-schedule',
endpoint_input=predictor.endpoint,
endpoint_input=predictor.endpoint_name,
statistics=my_monitor.baseline_statistics(),
constraints=my_monitor.suggested_constraints(),
schedule_cron_expression=CronExpressionGenerator.hourly(),
Expand Down
2 changes: 1 addition & 1 deletion doc/frameworks/tensorflow/deploying_tensorflow_serving.rst
Original file line number Diff line number Diff line change
Expand Up @@ -578,7 +578,7 @@ additional ``Predictor`` instances. Here's how:
# ... continuing from the previous example

# get the endpoint name from the default predictor
endpoint = predictor.endpoint
endpoint = predictor.endpoint_name

# get a predictor for 'model2'
model2_predictor = Predictor(endpoint, model_name='model2')
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/factorization_machines.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,14 +278,18 @@ class FactorizationMachinesPredictor(Predictor):
https://docs.aws.amazon.com/sagemaker/latest/dg/fm-in-formats.html
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(FactorizationMachinesPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
15 changes: 11 additions & 4 deletions src/sagemaker/amazon/ipinsights.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,14 +184,21 @@ class IPInsightsPredictor(Predictor):
second column should contain the IPv4 address in dot notation.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(IPInsightsPredictor, self).__init__(
endpoint, sagemaker_session, serializer=csv_serializer, deserializer=json_deserializer
endpoint_name,
sagemaker_session,
serializer=csv_serializer,
deserializer=json_deserializer,
)


Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,14 +209,18 @@ class KMeansPredictor(Predictor):
``closest_cluster`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(KMeansPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/knn.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,14 +197,18 @@ class KNNPredictor(Predictor):
key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(KNNPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/lda.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,14 +181,18 @@ class LDAPredictor(Predictor):
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(LDAPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/linear_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -442,14 +442,18 @@ class LinearLearnerPredictor(Predictor):
key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(LinearLearnerPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/ntm.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,14 +211,18 @@ class NTMPredictor(Predictor):
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(NTMPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,14 +193,18 @@ class PCAPredictor(Predictor):
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(PCAPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
12 changes: 8 additions & 4 deletions src/sagemaker/amazon/randomcutforest.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,14 +172,18 @@ class RandomCutForestPredictor(Predictor):
``Record.label`` field.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint:
sagemaker_session:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(RandomCutForestPredictor, self).__init__(
endpoint,
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
Expand Down
22 changes: 11 additions & 11 deletions src/sagemaker/predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ class Predictor(object):

def __init__(
self,
endpoint,
endpoint_name,
sagemaker_session=None,
serializer=None,
deserializer=None,
Expand All @@ -53,7 +53,7 @@ def __init__(
sequence of bytes from the prediction result without any modifications.

Args:
endpoint (str): Name of the Amazon SageMaker endpoint to which
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
Expand All @@ -74,7 +74,7 @@ def __init__(
accept (str): The invocation's "Accept", overriding any accept from
the deserializer (default: None).
"""
self.endpoint = endpoint
self.endpoint_name = endpoint_name
self.sagemaker_session = sagemaker_session or Session()
self.serializer = serializer
self.deserializer = deserializer
Expand Down Expand Up @@ -137,7 +137,7 @@ def _create_request_args(self, data, initial_args=None, target_model=None, targe
args = dict(initial_args) if initial_args else {}

if "EndpointName" not in args:
args["EndpointName"] = self.endpoint
args["EndpointName"] = self.endpoint_name

if self.content_type and "ContentType" not in args:
args["ContentType"] = self.content_type
Expand Down Expand Up @@ -175,7 +175,7 @@ def delete_endpoint(self, delete_endpoint_config=True):
if delete_endpoint_config:
self._delete_endpoint_config()

self.sagemaker_session.delete_endpoint(self.endpoint)
self.sagemaker_session.delete_endpoint(self.endpoint_name)

def delete_model(self):
"""Deletes the Amazon SageMaker models backing this predictor."""
Expand Down Expand Up @@ -225,10 +225,10 @@ def update_data_capture_config(self, data_capture_config):
DataCaptureConfig to update the predictor's endpoint to use.
"""
endpoint_desc = self.sagemaker_session.sagemaker_client.describe_endpoint(
EndpointName=self.endpoint
EndpointName=self.endpoint_name
)

new_config_name = name_from_base(base=self.endpoint)
new_config_name = name_from_base(base=self.endpoint_name)

data_capture_config_dict = None
if data_capture_config is not None:
Expand All @@ -241,7 +241,7 @@ def update_data_capture_config(self, data_capture_config):
)

self.sagemaker_session.update_endpoint(
endpoint_name=self.endpoint, endpoint_config_name=new_config_name
endpoint_name=self.endpoint_name, endpoint_config_name=new_config_name
)

def list_monitors(self):
Expand All @@ -254,10 +254,10 @@ def list_monitors(self):

"""
monitoring_schedules_dict = self.sagemaker_session.list_monitoring_schedules(
endpoint_name=self.endpoint
endpoint_name=self.endpoint_name
)
if len(monitoring_schedules_dict["MonitoringScheduleSummaries"]) == 0:
print("No monitors found for endpoint. endpoint: {}".format(self.endpoint))
print("No monitors found for endpoint. endpoint: {}".format(self.endpoint_name))
return []

monitors = []
Expand Down Expand Up @@ -292,7 +292,7 @@ def list_monitors(self):
def _get_endpoint_config_name(self):
"""Placeholder docstring"""
endpoint_desc = self.sagemaker_session.sagemaker_client.describe_endpoint(
EndpointName=self.endpoint
EndpointName=self.endpoint_name
)
endpoint_config_name = endpoint_desc["EndpointConfigName"]
return endpoint_config_name
Expand Down
4 changes: 2 additions & 2 deletions src/sagemaker/sparkml/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ class SparkMLPredictor(Predictor):
list.
"""

def __init__(self, endpoint, sagemaker_session=None):
def __init__(self, endpoint_name, sagemaker_session=None):
"""Initializes a SparkMLPredictor which should be used with SparkMLModel
to perform predictions against SparkML models serialized via MLeap. The
response is returned in text/csv format which is the default response
Expand All @@ -49,7 +49,7 @@ def __init__(self, endpoint, sagemaker_session=None):
"""
sagemaker_session = sagemaker_session or Session()
super(SparkMLPredictor, self).__init__(
endpoint=endpoint,
endpoint_name=endpoint_name,
sagemaker_session=sagemaker_session,
serializer=csv_serializer,
content_type=CONTENT_TYPE_CSV,
Expand Down
Loading