Skip to content

breaking: deprecate sagemaker.amazon.amazon_estimator.get_image_uri() #1725

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jul 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions doc/overview.rst
Original file line number Diff line number Diff line change
Expand Up @@ -993,12 +993,17 @@ the ML Pipeline.

.. code:: python

xgb_image = get_image_uri(sess.boto_region_name, 'xgboost', repo_version="latest")
xgb_model = Model(model_data='s3://path/to/model.tar.gz', image_uri=xgb_image)
sparkml_model = SparkMLModel(model_data='s3://path/to/model.tar.gz', env={'SAGEMAKER_SPARKML_SCHEMA': schema})
from sagemaker import image_uris, session
from sagemaker.model import Model
from sagemaker.pipeline import PipelineModel
from sagemaker.sparkml import SparkMLModel

model_name = 'inference-pipeline-model'
endpoint_name = 'inference-pipeline-endpoint'
xgb_image = image_uris.retrieve("xgboost", session.Session().boto_region_name, repo_version="latest")
xgb_model = Model(model_data="s3://path/to/model.tar.gz", image_uri=xgb_image)
sparkml_model = SparkMLModel(model_data="s3://path/to/model.tar.gz", env={"SAGEMAKER_SPARKML_SCHEMA": schema})

model_name = "inference-pipeline-model"
endpoint_name = "inference-pipeline-endpoint"
sm_model = PipelineModel(name=model_name, role=sagemaker_role, models=[sparkml_model, xgb_model])

This defines a ``PipelineModel`` consisting of SparkML model and an XGBoost model stacked sequentially.
Expand Down
172 changes: 4 additions & 168 deletions src/sagemaker/amazon/amazon_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,13 @@

from six.moves.urllib.parse import urlparse

from sagemaker import image_uris
from sagemaker.amazon import validation
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.common import write_numpy_to_dense_tensor
from sagemaker.estimator import EstimatorBase, _TrainingJob
from sagemaker.inputs import FileSystemInput, TrainingInput
from sagemaker.model import NEO_IMAGE_ACCOUNT
from sagemaker.utils import sagemaker_timestamp, get_ecr_image_uri_prefix
from sagemaker.utils import sagemaker_timestamp

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -93,8 +93,8 @@ def __init__(

def train_image(self):
"""Placeholder docstring"""
return get_image_uri(
self.sagemaker_session.boto_region_name, type(self).repo_name, type(self).repo_version
return image_uris.retrieve(
self.repo_name, self.sagemaker_session.boto_region_name, version=self.repo_version,
)

def hyperparameters(self):
Expand Down Expand Up @@ -452,167 +452,3 @@ def upload_numpy_to_s3_shards(
s3.Object(bucket, key_prefix + file).delete()
finally:
raise ex


def registry(region_name, algorithm=None):
"""Return docker registry for the given AWS region

Note: Not all the algorithms listed below have an Amazon Estimator
implemented. For full list of pre-implemented Estimators, look at:

https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/amazon

Args:
region_name (str): The region name for the account.
algorithm (str): The algorithm for the account.

Raises:
ValueError: If invalid algorithm passed in or if mapping does not exist for given algorithm
and region.
"""
region_to_accounts = {}
if algorithm in [
None,
"pca",
"kmeans",
"linear-learner",
"factorization-machines",
"ntm",
"randomcutforest",
"knn",
"object2vec",
"ipinsights",
]:
region_to_accounts = {
"us-east-1": "382416733822",
"us-east-2": "404615174143",
"us-west-2": "174872318107",
"eu-west-1": "438346466558",
"eu-central-1": "664544806723",
"ap-northeast-1": "351501993468",
"ap-northeast-2": "835164637446",
"ap-southeast-2": "712309505854",
"us-gov-west-1": "226302683700",
"ap-southeast-1": "475088953585",
"ap-south-1": "991648021394",
"ca-central-1": "469771592824",
"eu-west-2": "644912444149",
"us-west-1": "632365934929",
"us-iso-east-1": "490574956308",
"ap-east-1": "286214385809",
"eu-north-1": "669576153137",
"eu-west-3": "749696950732",
"sa-east-1": "855470959533",
"me-south-1": "249704162688",
"cn-north-1": "390948362332",
"cn-northwest-1": "387376663083",
}
elif algorithm in ["lda"]:
region_to_accounts = {
"us-east-1": "766337827248",
"us-east-2": "999911452149",
"us-west-2": "266724342769",
"eu-west-1": "999678624901",
"eu-central-1": "353608530281",
"ap-northeast-1": "258307448986",
"ap-northeast-2": "293181348795",
"ap-southeast-2": "297031611018",
"us-gov-west-1": "226302683700",
"ap-southeast-1": "475088953585",
"ap-south-1": "991648021394",
"ca-central-1": "469771592824",
"eu-west-2": "644912444149",
"us-west-1": "632365934929",
"us-iso-east-1": "490574956308",
}
elif algorithm in ["forecasting-deepar"]:
region_to_accounts = {
"us-east-1": "522234722520",
"us-east-2": "566113047672",
"us-west-2": "156387875391",
"eu-west-1": "224300973850",
"eu-central-1": "495149712605",
"ap-northeast-1": "633353088612",
"ap-northeast-2": "204372634319",
"ap-southeast-2": "514117268639",
"us-gov-west-1": "226302683700",
"ap-southeast-1": "475088953585",
"ap-south-1": "991648021394",
"ca-central-1": "469771592824",
"eu-west-2": "644912444149",
"us-west-1": "632365934929",
"us-iso-east-1": "490574956308",
"ap-east-1": "286214385809",
"eu-north-1": "669576153137",
"eu-west-3": "749696950732",
"sa-east-1": "855470959533",
"me-south-1": "249704162688",
"cn-north-1": "390948362332",
"cn-northwest-1": "387376663083",
}
elif algorithm in [
"xgboost",
"seq2seq",
"image-classification",
"blazingtext",
"object-detection",
"semantic-segmentation",
]:
region_to_accounts = {
"us-east-1": "811284229777",
"us-east-2": "825641698319",
"us-west-2": "433757028032",
"eu-west-1": "685385470294",
"eu-central-1": "813361260812",
"ap-northeast-1": "501404015308",
"ap-northeast-2": "306986355934",
"ap-southeast-2": "544295431143",
"us-gov-west-1": "226302683700",
"ap-southeast-1": "475088953585",
"ap-south-1": "991648021394",
"ca-central-1": "469771592824",
"eu-west-2": "644912444149",
"us-west-1": "632365934929",
"us-iso-east-1": "490574956308",
"ap-east-1": "286214385809",
"eu-north-1": "669576153137",
"eu-west-3": "749696950732",
"sa-east-1": "855470959533",
"me-south-1": "249704162688",
"cn-north-1": "390948362332",
"cn-northwest-1": "387376663083",
}
elif algorithm in ["image-classification-neo", "xgboost-neo"]:
region_to_accounts = NEO_IMAGE_ACCOUNT
else:
raise ValueError(
"Algorithm class:{} does not have mapping to account_id with images".format(algorithm)
)

if region_name in region_to_accounts:
account_id = region_to_accounts[region_name]
return get_ecr_image_uri_prefix(account_id, region_name)

raise ValueError(
"Algorithm ({algorithm}) is unsupported for region ({region_name}).".format(
algorithm=algorithm, region_name=region_name
)
)


def get_image_uri(region_name, repo_name, repo_version=1):
"""Return algorithm image URI for the given AWS region, repository name, and
repository version

Args:
region_name:
repo_name:
repo_version:
"""
logger.warning(
"'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class "
"in SageMaker Python SDK v2."
)

repo = "{}:{}".format(repo_name, repo_version)
return "{}/{}".format(registry(region_name, repo_name), repo)
10 changes: 7 additions & 3 deletions src/sagemaker/amazon/factorization_machines.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt, isin, ge
Expand Down Expand Up @@ -309,8 +310,11 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(FactorizationMachines.repo_name, FactorizationMachines.repo_version)
image_uri = "{}/{}".format(registry(sagemaker_session.boto_session.region_name), repo)
image_uri = image_uris.retrieve(
FactorizationMachines.repo_name,
sagemaker_session.boto_region_name,
version=FactorizationMachines.repo_version,
)
super(FactorizationMachinesModel, self).__init__(
image_uri,
model_data,
Expand Down
11 changes: 6 additions & 5 deletions src/sagemaker/amazon/ipinsights.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, le
from sagemaker.deserializers import JSONDeserializer
Expand Down Expand Up @@ -219,11 +220,11 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(IPInsights.repo_name, IPInsights.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, IPInsights.repo_name), repo
image_uri = image_uris.retrieve(
IPInsights.repo_name,
sagemaker_session.boto_region_name,
version=IPInsights.repo_version,
)

super(IPInsightsModel, self).__init__(
image_uri,
model_data,
Expand Down
8 changes: 5 additions & 3 deletions src/sagemaker/amazon/kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt, isin, ge, le
Expand Down Expand Up @@ -242,8 +243,9 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(KMeans.repo_name, KMeans.repo_version)
image_uri = "{}/{}".format(registry(sagemaker_session.boto_session.region_name), repo)
image_uri = image_uris.retrieve(
KMeans.repo_name, sagemaker_session.boto_region_name, version=KMeans.repo_version,
)
super(KMeansModel, self).__init__(
image_uri,
model_data,
Expand Down
10 changes: 5 additions & 5 deletions src/sagemaker/amazon/knn.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, isin
Expand Down Expand Up @@ -230,12 +231,11 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(KNN.repo_name, KNN.repo_version)
image = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, KNN.repo_name), repo
image_uri = image_uris.retrieve(
KNN.repo_name, sagemaker_session.boto_region_name, version=KNN.repo_version,
)
super(KNNModel, self).__init__(
image,
image_uri,
model_data,
role,
predictor_cls=KNNPredictor,
Expand Down
8 changes: 4 additions & 4 deletions src/sagemaker/amazon/lda.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt
Expand Down Expand Up @@ -214,9 +215,8 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(LDA.repo_name, LDA.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, LDA.repo_name), repo
image_uri = image_uris.retrieve(
LDA.repo_name, sagemaker_session.boto_region_name, version=LDA.repo_version,
)
super(LDAModel, self).__init__(
image_uri,
Expand Down
10 changes: 7 additions & 3 deletions src/sagemaker/amazon/linear_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import isin, gt, lt, ge, le
Expand Down Expand Up @@ -473,8 +474,11 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(LinearLearner.repo_name, LinearLearner.repo_version)
image_uri = "{}/{}".format(registry(sagemaker_session.boto_session.region_name), repo)
image_uri = image_uris.retrieve(
LinearLearner.repo_name,
sagemaker_session.boto_region_name,
version=LinearLearner.repo_version,
)
super(LinearLearnerModel, self).__init__(
image_uri,
model_data,
Expand Down
8 changes: 4 additions & 4 deletions src/sagemaker/amazon/ntm.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
"""Placeholder docstring"""
from __future__ import absolute_import

from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker import image_uris
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase
from sagemaker.amazon.common import RecordSerializer, RecordDeserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, le, isin
Expand Down Expand Up @@ -244,9 +245,8 @@ def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(NTM.repo_name, NTM.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, NTM.repo_name), repo
image_uri = image_uris.retrieve(
NTM.repo_name, sagemaker_session.boto_region_name, version=NTM.repo_version,
)
super(NTMModel, self).__init__(
image_uri,
Expand Down
Loading