Skip to content

Let Framework models reuse code uploaded by Framework estimators #230

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 21, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,14 @@
CHANGELOG
=========

1.5.1dev
========

* enhancement: Let Framework models reuse code uploaded by Framework estimators

1.5.0
=====

* feature: Add Support for PyTorch Framework
* feature: Estimators: add support for TensorFlow 1.7.0
* feature: Estimators: add support for TensorFlow 1.8.0
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/chainer/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ def create_model(self, model_server_workers=None):
sagemaker.chainer.model.ChainerModel: A SageMaker ``ChainerModel`` object.
See :func:`~sagemaker.chainer.model.ChainerModel` for full details.
"""
return ChainerModel(self.model_data, self.role, self.entry_point, source_dir=self.source_dir,
return ChainerModel(self.model_data, self.role, self.entry_point, source_dir=self._model_source_dir(),
enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, name=self._current_job_name,
container_log_level=self.container_log_level, code_location=self.code_location,
py_version=self.py_version, framework_version=self.framework_version,
Expand Down
10 changes: 9 additions & 1 deletion src/sagemaker/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -561,7 +561,7 @@ def _prepare_for_training(self, job_name=None):
self._hyperparameters[SAGEMAKER_REGION_PARAM_NAME] = self.sagemaker_session.boto_region_name

def _stage_user_code_in_s3(self):
""" Upload the user training script to s3 and return the location.
"""Upload the user training script to s3 and return the location.

Returns: s3 uri

Expand All @@ -579,6 +579,14 @@ def _stage_user_code_in_s3(self):
script=self.entry_point,
directory=self.source_dir)

def _model_source_dir(self):
"""Get the appropriate value to pass as source_dir to model constructor on deploying

Returns:
str: Either a local or an S3 path pointing to the source_dir to be used for code by the model to be deployed
"""
return self.source_dir if self.sagemaker_session.local_mode else self.uploaded_code.s3_prefix

def hyperparameters(self):
"""Return the hyperparameters as a dictionary to use for training.

Expand Down
1 change: 1 addition & 0 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,7 @@ def __init__(self, model_data, image, role, entry_point, source_dir=None, predic
source_dir (str): Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: None). Structure within this
directory will be preserved when training on SageMaker.
If the directory points to S3, no code will be uploaded and the S3 location will be used instead.
predictor_cls (callable[string, sagemaker.session.Session]): A function to call to create
a predictor (default: None). If not None, ``deploy`` will return the result of invoking
this function on the created endpoint name.
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/mxnet/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def create_model(self, model_server_workers=None):
sagemaker.mxnet.model.MXNetModel: A SageMaker ``MXNetModel`` object.
See :func:`~sagemaker.mxnet.model.MXNetModel` for full details.
"""
return MXNetModel(self.model_data, self.role, self.entry_point, source_dir=self.source_dir,
return MXNetModel(self.model_data, self.role, self.entry_point, source_dir=self._model_source_dir(),
enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, name=self._current_job_name,
container_log_level=self.container_log_level, code_location=self.code_location,
py_version=self.py_version, framework_version=self.framework_version,
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/pytorch/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def create_model(self, model_server_workers=None):
sagemaker.pytorch.model.PyTorchModel: A SageMaker ``PyTorchModel`` object.
See :func:`~sagemaker.pytorch.model.PyTorchModel` for full details.
"""
return PyTorchModel(self.model_data, self.role, self.entry_point, source_dir=self.source_dir,
return PyTorchModel(self.model_data, self.role, self.entry_point, source_dir=self._model_source_dir(),
enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, name=self._current_job_name,
container_log_level=self.container_log_level, code_location=self.code_location,
py_version=self.py_version, framework_version=self.framework_version,
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/tensorflow/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -300,7 +300,7 @@ def create_model(self, model_server_workers=None):
See :func:`~sagemaker.tensorflow.model.TensorFlowModel` for full details.
"""
env = {'SAGEMAKER_REQUIREMENTS': self.requirements_file}
return TensorFlowModel(self.model_data, self.role, self.entry_point, source_dir=self.source_dir,
return TensorFlowModel(self.model_data, self.role, self.entry_point, source_dir=self._model_source_dir(),
enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, env=env,
name=self._current_job_name, container_log_level=self.container_log_level,
code_location=self.code_location, py_version=self.py_version,
Expand Down
2 changes: 1 addition & 1 deletion tests/unit/test_chainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,7 +274,7 @@ def test_chainer(strftime, sagemaker_session, chainer_version):
expected_image_base = '520713654638.dkr.ecr.us-west-2.amazonaws.com/sagemaker-chainer:{}-gpu-{}'
assert {'Environment':
{'SAGEMAKER_SUBMIT_DIRECTORY':
's3://mybucket/sagemaker-chainer-{}/sourcedir.tar.gz'.format(TIMESTAMP),
's3://mybucket/sagemaker-chainer-{}/source/sourcedir.tar.gz'.format(TIMESTAMP),
'SAGEMAKER_PROGRAM': 'dummy_script.py',
'SAGEMAKER_ENABLE_CLOUDWATCH_METRICS': 'false',
'SAGEMAKER_REGION': 'us-west-2',
Expand Down
2 changes: 1 addition & 1 deletion tests/unit/test_mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ def test_mxnet(strftime, sagemaker_session, mxnet_version):
expected_image_base = '520713654638.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet:{}-gpu-py2'
environment = {
'Environment': {
'SAGEMAKER_SUBMIT_DIRECTORY': 's3://mybucket/sagemaker-mxnet-{}/sourcedir.tar.gz'.format(TIMESTAMP),
'SAGEMAKER_SUBMIT_DIRECTORY': 's3://mybucket/sagemaker-mxnet-{}/source/sourcedir.tar.gz'.format(TIMESTAMP),
'SAGEMAKER_PROGRAM': 'dummy_script.py', 'SAGEMAKER_ENABLE_CLOUDWATCH_METRICS': 'false',
'SAGEMAKER_REGION': 'us-west-2', 'SAGEMAKER_CONTAINER_LOG_LEVEL': '20'
},
Expand Down
2 changes: 1 addition & 1 deletion tests/unit/test_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ def test_pytorch(strftime, sagemaker_session, pytorch_version):
expected_image_base = '520713654638.dkr.ecr.us-west-2.amazonaws.com/sagemaker-pytorch:{}-gpu-{}'
assert {'Environment':
{'SAGEMAKER_SUBMIT_DIRECTORY':
's3://mybucket/sagemaker-pytorch-{}/sourcedir.tar.gz'.format(TIMESTAMP),
's3://mybucket/sagemaker-pytorch-{}/source/sourcedir.tar.gz'.format(TIMESTAMP),
'SAGEMAKER_PROGRAM': 'dummy_script.py',
'SAGEMAKER_ENABLE_CLOUDWATCH_METRICS': 'false',
'SAGEMAKER_REGION': 'us-west-2',
Expand Down