Skip to content

Fix script mode image async attach and deploy #692

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 12, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sagemaker/chainer/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
init_params[argument[len('sagemaker_'):]] = value

image_name = init_params.pop('image')
framework, py_version, tag = framework_name_from_image(image_name)
framework, py_version, tag, _ = framework_name_from_image(image_name)

if not framework:
# If we were unable to parse the framework name from the image it is not one of our
Expand Down
14 changes: 8 additions & 6 deletions src/sagemaker/fw_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,29 +211,31 @@ def framework_name_from_image(image_name):
str: The framework name
str: The Python version
str: The image tag
str: If the image is script mode
"""
sagemaker_pattern = re.compile(r'^(\d+)(\.)dkr(\.)ecr(\.)(.+)(\.)amazonaws.com(/)(.*:.*)$')
sagemaker_match = sagemaker_pattern.match(image_name)
if sagemaker_match is None:
return None, None, None
return None, None, None, None
else:
# extract framework, python version and image tag
# We must support both the legacy and current image name format.
name_pattern = re.compile(
r'^sagemaker(?:-rl)?-(tensorflow|mxnet|chainer|pytorch|scikit-learn):(.*)-(.*?)-(py2|py3)$')
r'^sagemaker(?:-rl)?-(tensorflow|mxnet|chainer|pytorch|scikit-learn)(?:-)?(scriptmode)?:(.*)-(.*?)-(py2|py3)$') # noqa
legacy_name_pattern = re.compile(
r'^sagemaker-(tensorflow|mxnet)-(py2|py3)-(cpu|gpu):(.*)$')

name_match = name_pattern.match(sagemaker_match.group(8))
legacy_match = legacy_name_pattern.match(sagemaker_match.group(8))

if name_match is not None:
fw, ver, device, py = name_match.group(1), name_match.group(2), name_match.group(3), name_match.group(4)
return fw, py, '{}-{}-{}'.format(ver, device, py)
fw, scriptmode, ver, device, py = name_match.group(1), name_match.group(2), name_match.group(3),\
name_match.group(4), name_match.group(5)
return fw, py, '{}-{}-{}'.format(ver, device, py), scriptmode
elif legacy_match is not None:
return legacy_match.group(1), legacy_match.group(2), legacy_match.group(4)
return legacy_match.group(1), legacy_match.group(2), legacy_match.group(4), None
else:
return None, None, None
return None, None, None, None


def framework_version_from_tag(image_tag):
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/mxnet/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
"""
init_params = super(MXNet, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
image_name = init_params.pop('image')
framework, py_version, tag = framework_name_from_image(image_name)
framework, py_version, tag, _ = framework_name_from_image(image_name)

if not framework:
# If we were unable to parse the framework name from the image it is not one of our
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/pytorch/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
"""
init_params = super(PyTorch, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
image_name = init_params.pop('image')
framework, py_version, tag = framework_name_from_image(image_name)
framework, py_version, tag, _ = framework_name_from_image(image_name)

if not framework:
# If we were unable to parse the framework name from the image it is not one of our
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/rl/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,7 +253,7 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
._prepare_init_params_from_job_description(job_details, model_channel_name)

image_name = init_params.pop('image')
framework, _, tag = fw_utils.framework_name_from_image(image_name)
framework, _, tag, _ = fw_utils.framework_name_from_image(image_name)

if not framework:
# If we were unable to parse the framework name from the image it is not one of our
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/sklearn/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
init_params = super(SKLearn, cls)._prepare_init_params_from_job_description(job_details)

image_name = init_params.pop('image')
framework, py_version, _ = framework_name_from_image(image_name)
framework, py_version, _, _ = framework_name_from_image(image_name)
init_params['py_version'] = py_version

if framework and framework != cls.__framework_name__:
Expand Down
5 changes: 4 additions & 1 deletion src/sagemaker/tensorflow/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,13 +356,16 @@ def _prepare_init_params_from_job_description(cls, job_details, model_channel_na
init_params[argument] = value

image_name = init_params.pop('image')
framework, py_version, tag = fw.framework_name_from_image(image_name)
framework, py_version, tag, script_mode = fw.framework_name_from_image(image_name)
if not framework:
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params['image_name'] = image_name
return init_params

if script_mode:
init_params['script_mode'] = True

init_params['py_version'] = py_version

# We switched image tagging scheme from regular image version (e.g. '1.0') to more expressive
Expand Down
2 changes: 1 addition & 1 deletion tests/data/tensorflow_mnist/mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,6 @@ def serving_input_fn():
tf.estimator.train_and_evaluate(mnist_classifier, train_spec, eval_spec)

if args.current_host == args.hosts[0]:
mnist_classifier.export_savedmodel(args.model_dir, serving_input_fn)
mnist_classifier.export_savedmodel('/opt/ml/model', serving_input_fn)

tf_logger.info('====== Training finished =========')
35 changes: 31 additions & 4 deletions tests/integ/test_tf_script_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,10 @@
# language governing permissions and limitations under the License.
from __future__ import absolute_import

import numpy as np
import os
import pytest
import time

import boto3
from sagemaker.tensorflow import TensorFlow
Expand All @@ -40,7 +42,7 @@ def test_mnist(sagemaker_session, instance_type):
train_instance_type=instance_type,
sagemaker_session=sagemaker_session,
py_version='py3',
framework_version='1.11',
framework_version=TensorFlow.LATEST_VERSION,
base_job_name='test-tf-sm-mnist')
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(RESOURCE_PATH, 'data'),
Expand All @@ -49,7 +51,7 @@ def test_mnist(sagemaker_session, instance_type):
with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs)
_assert_s3_files_exist(estimator.model_dir,
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta', 'saved_model.pb'])
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta'])


@pytest.mark.canary_quick
Expand All @@ -63,7 +65,7 @@ def test_mnist_distributed(sagemaker_session, instance_type):
sagemaker_session=sagemaker_session,
py_version=integ.PYTHON_VERSION,
script_mode=True,
framework_version='1.11',
framework_version=TensorFlow.LATEST_VERSION,
distributions=PARAMETER_SERVER_DISTRIBUTION,
base_job_name='test-tf-sm-mnist')
inputs = estimator.sagemaker_session.upload_data(
Expand All @@ -73,7 +75,32 @@ def test_mnist_distributed(sagemaker_session, instance_type):
with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs)
_assert_s3_files_exist(estimator.model_dir,
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta', 'saved_model.pb'])
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta'])


def test_mnist_async(sagemaker_session):
estimator = TensorFlow(entry_point=SCRIPT,
role='SageMakerRole',
train_instance_count=1,
train_instance_type='ml.c5.4xlarge',
sagemaker_session=sagemaker_session,
py_version='py3',
framework_version=TensorFlow.LATEST_VERSION,
base_job_name='test-tf-sm-mnist')
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(RESOURCE_PATH, 'data'),
key_prefix='scriptmode/mnist')
estimator.fit(inputs, wait=False)
training_job_name = estimator.latest_training_job.name
time.sleep(20)
endpoint_name = training_job_name
with timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = TensorFlow.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
endpoint_name=endpoint_name)

result = predictor.predict(np.zeros(784))
print('predict result: {}'.format(result))


def _assert_s3_files_exist(s3_url, files):
Expand Down
21 changes: 13 additions & 8 deletions tests/unit/test_fw_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,45 +354,50 @@ def walk():

def test_framework_name_from_image_mxnet():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet:1.1-gpu-py3'
assert ('mxnet', 'py3', '1.1-gpu-py3') == fw_utils.framework_name_from_image(image_name)
assert ('mxnet', 'py3', '1.1-gpu-py3', None) == fw_utils.framework_name_from_image(image_name)


def test_framework_name_from_image_tf():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-tensorflow:1.6-cpu-py2'
assert ('tensorflow', 'py2', '1.6-cpu-py2') == fw_utils.framework_name_from_image(image_name)
assert ('tensorflow', 'py2', '1.6-cpu-py2', None) == fw_utils.framework_name_from_image(image_name)


def test_framework_name_from_image_tf_scriptmode():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-tensorflow-scriptmode:1.12-cpu-py3'
assert ('tensorflow', 'py3', '1.12-cpu-py3', 'scriptmode') == fw_utils.framework_name_from_image(image_name)


def test_framework_name_from_image_rl():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-rl-mxnet:toolkit1.1-gpu-py3'
assert ('mxnet', 'py3', 'toolkit1.1-gpu-py3') == fw_utils.framework_name_from_image(image_name)
assert ('mxnet', 'py3', 'toolkit1.1-gpu-py3', None) == fw_utils.framework_name_from_image(image_name)


def test_legacy_name_from_framework_image():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet-py3-gpu:2.5.6-gpu-py2'
framework, py_ver, tag = fw_utils.framework_name_from_image(image_name)
framework, py_ver, tag, _ = fw_utils.framework_name_from_image(image_name)
assert framework == 'mxnet'
assert py_ver == 'py3'
assert tag == '2.5.6-gpu-py2'


def test_legacy_name_from_wrong_framework():
framework, py_ver, tag = fw_utils.framework_name_from_image(
framework, py_ver, tag, _ = fw_utils.framework_name_from_image(
'123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-myown-py2-gpu:1')
assert framework is None
assert py_ver is None
assert tag is None


def test_legacy_name_from_wrong_python():
framework, py_ver, tag = fw_utils.framework_name_from_image(
framework, py_ver, tag, _ = fw_utils.framework_name_from_image(
'123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-myown-py4-gpu:1')
assert framework is None
assert py_ver is None
assert tag is None


def test_legacy_name_from_wrong_device():
framework, py_ver, tag = fw_utils.framework_name_from_image(
framework, py_ver, tag, _ = fw_utils.framework_name_from_image(
'123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-myown-py4-gpu:1')
assert framework is None
assert py_ver is None
Expand All @@ -401,7 +406,7 @@ def test_legacy_name_from_wrong_device():

def test_legacy_name_from_image_any_tag():
image_name = '123.dkr.ecr.us-west-2.amazonaws.com/sagemaker-tensorflow-py2-cpu:any-tag'
framework, py_ver, tag = fw_utils.framework_name_from_image(image_name)
framework, py_ver, tag, _ = fw_utils.framework_name_from_image(image_name)
assert framework == 'tensorflow'
assert py_ver == 'py2'
assert tag == 'any-tag'
Expand Down