Skip to content

fix: use unique training job names in TensorFlow script mode integ tests #742

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 9, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 7 additions & 11 deletions tests/integ/test_tf_script_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,14 +49,13 @@ def test_mnist(sagemaker_session, instance_type):
sagemaker_session=sagemaker_session,
py_version='py3',
framework_version=TensorFlow.LATEST_VERSION,
metric_definitions=[{'Name': 'train:global_steps', 'Regex': r'global_step\/sec:\s(.*)'}],
base_job_name=unique_name_from_base('test-tf-sm-mnist'))
metric_definitions=[{'Name': 'train:global_steps', 'Regex': r'global_step\/sec:\s(.*)'}])
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(RESOURCE_PATH, 'data'),
key_prefix='scriptmode/mnist')

with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs)
estimator.fit(inputs=inputs, job_name=unique_name_from_base('test-tf-sm-mnist'))
_assert_s3_files_exist(estimator.model_dir,
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta'])
df = estimator.training_job_analytics.dataframe()
Expand All @@ -77,8 +76,7 @@ def test_server_side_encryption(sagemaker_session):
train_instance_type='ml.c5.xlarge',
sagemaker_session=sagemaker_session,
py_version='py3',
framework_version='1.11',
base_job_name=unique_name_from_base('test-server-side-encryption'),
framework_version=TensorFlow.LATEST_VERSION,
code_location=output_path,
output_path=output_path,
model_dir='/opt/ml/model',
Expand All @@ -89,7 +87,7 @@ def test_server_side_encryption(sagemaker_session):
key_prefix='scriptmode/mnist')

with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs)
estimator.fit(inputs=inputs, job_name=unique_name_from_base('test-server-side-encryption'))


@pytest.mark.canary_quick
Expand All @@ -104,14 +102,13 @@ def test_mnist_distributed(sagemaker_session, instance_type):
py_version=integ.PYTHON_VERSION,
script_mode=True,
framework_version=TensorFlow.LATEST_VERSION,
distributions=PARAMETER_SERVER_DISTRIBUTION,
base_job_name=unique_name_from_base('test-tf-sm-mnist'))
distributions=PARAMETER_SERVER_DISTRIBUTION)
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(RESOURCE_PATH, 'data'),
key_prefix='scriptmode/distributed_mnist')

with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs)
estimator.fit(inputs=inputs, job_name=unique_name_from_base('test-tf-sm-distributed'))
_assert_s3_files_exist(estimator.model_dir,
['graph.pbtxt', 'model.ckpt-0.index', 'model.ckpt-0.meta'])

Expand All @@ -124,12 +121,11 @@ def test_mnist_async(sagemaker_session):
sagemaker_session=sagemaker_session,
py_version='py3',
framework_version=TensorFlow.LATEST_VERSION,
base_job_name=unique_name_from_base('test-tf-sm-mnist'),
tags=TAGS)
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(RESOURCE_PATH, 'data'),
key_prefix='scriptmode/mnist')
estimator.fit(inputs, wait=False)
estimator.fit(inputs=inputs, wait=False, job_name=unique_name_from_base('test-tf-sm-async'))
training_job_name = estimator.latest_training_job.name
time.sleep(20)
endpoint_name = training_job_name
Expand Down