Releases: aws/sagemaker-python-sdk
Releases · aws/sagemaker-python-sdk
v2.104.0
Features
- local mode executor implementation
- Pipelines local mode setup
- Add PT 1.12 support
- added _AnalysisConfigGenerator for clarify
Bug Fixes and Other Changes
- yaml safe_load sagemaker config
- pipelines local mode minor bug fixes
- add local mode integ tests
- implement local JsonGet function
- Add Pipeline annotation in model base class and tensorflow estimator
- Allow users to customize trial component display names for pipeline launched jobs
- Update localmode code to decode urllib response as UTF8
Documentation Changes
- New content for Pipelines local mode
- Correct documentation error
v2.103.0
Features
- AutoGluon 0.4.3 and 0.5.2 image_uris
Bug Fixes and Other Changes
- Revert "change: add a check to prevent launching a modelparallel job on CPU only instances"
- Add gpu capability to local
- Link PyTorch 1.11 to 1.11.0
v2.102.0
Features
- add warnings for xgboost specific rules in debugger rules
- Add PyTorch DDP distribution support
- Add test for profiler enablement with debugger_hook false
Bug Fixes and Other Changes
- Two letter language code must be supported
- add a check to prevent launching a modelparallel job on CPU only instances
- Allow StepCollection added in ConditionStep to be depended on
- Add PipelineVariable annotation in framework models
- skip managed spot training mxnet nb
Documentation Changes
- smdistributed libraries currency updates
v2.101.1
Bug Fixes and Other Changes
- added more ml frameworks supported by SageMaker Workflows
- test: Vspecinteg2
- Add PipelineVariable annotation in amazon models
v2.101.0
Features
- Algorithms region launch on CGK
- enhance-bucket-override-support
- infer framework and version
- support clarify bias detection when facets not included
- Add CGK region to frameworks by DLC
Bug Fixes and Other Changes
- Make repack step output path align with model repack path
- Support parameterized source code input for TrainingStep
Documentation Changes
- heterogeneous cluster api doc fix
- smdmp v1.10 release note
v2.100.0
Features
- upgrade to support python 3.10
- Add target_model to support multi-model endpoints
- Added support for feature group schema change and feature parameters
Bug Fixes and Other Changes
- enable model.register without 'inference' & 'transform' instances
- rename RegisterModel inner steps to prevent duplicate step names
- remove primitive_or_expr() from conditions
- support pipeline variables for spark processors run arguments
- make 'ModelInput' field optional for inference recommendation
- Fix processing image uri param
- fix: neo inferentia as compilation target not using framework ver
Documentation Changes
- SageMaker model parallel library v1.10.0 documentation
- add detail & links to clarify docstrings
v2.99.0
Features
- heterogeneous cluster set up in distribution config
- support heterogeneous cluster for training
- include fields to work with inference recommender
Bug Fixes and Other Changes
- Moving the newly added field instance_group to the end of method
- image_uri does not need to be specified with instance_groups
- Loosen version of attrs dependency
- Add PipelineVariable annotation in estimatory, processing, tuner, transformer base classes
- model table link
Documentation Changes
- documentation for heterogeneous cluster
v2.98.0
Features
- Adding deepar image
Documentation Changes
- edit to clarify how to use inference.py
v2.97.0
Deprecations and Removals
- remove support for python 3.6
Features
- update prebuilt models documentation
Bug Fixes and Other Changes
- Skipping test_candidate_estimator_default_rerun_and_deploy
- Update model name from 'compiled.pt' to 'model.pth' for neo
- update pytest, skip hf integ temp
- Add override_pipeline_parameter_var decorator to give grace period to update invalid pipeline var args
v2.96.0
Features
- Add helper method to generate pipeline adjacency list
Bug Fixes and Other Changes
- changing trcomp integ tests to be able to run in all regions