|
| 1 | +# Image Classification \- TensorFlow Hyperparameters<a name="IC-TF-Hyperparameter"></a> |
| 2 | + |
| 3 | +Hyperparameters are parameters that are set before a machine learning model begins learning\. The following hyperparameters are supported by the Amazon SageMaker built\-in Image Classification \- TensorFlow algorithm\. See [Tune an Image Classification \- TensorFlow model](IC-TF-tuning.md) for information on hyperparameter tuning\. |
| 4 | + |
| 5 | + |
| 6 | +| Parameter Name | Description | |
| 7 | +| --- | --- | |
| 8 | +| augmentation | Set to `"True"` to apply `augmentation_random_flip`, `augmentation_random_rotation`, and `augmentation_random_zoom` to the training data\. Valid values: string, either: \(`"True"` or `"False"`\)\. Default value: `"False"`\. | |
| 9 | +| augmentation\_random\_flip | Indicates which flip mode to use for data augmentation when `augmentation` is set to `"True"`\. For more information, see [RandomFlip](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip) in the TensorFlow documentation\. Valid values: string, any of the following: \(`"horizontal_and_vertical"`, `"vertical"`, or `"None"`\)\. Default value: `"horizontal_and_vertical"`\. | |
| 10 | +| augmentation\_random\_rotation | Indicates how much rotation to use for data augmentation when `augmentation` is set to `"True"`\. Values represent a fraction of 2π\. Positive values rotate counterclockwise while negative values rotate clockwise\. `0` means no rotation\. For more information, see [RandomRotation](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomRotation) in the TensorFlow documentation\. Valid values: float, range: \[`-1.0`, `1.0`\]\. Default value: `0.2`\. | |
| 11 | +| augmentation\_random\_zoom | Indicates how much vertical zoom to use for data augmentation when `augmentation` is set to `"True"`\. Positive values zoom out while negative values zoom in\. `0` means no zoom\. For more information, see [RandomZoom](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomZoom) in the TensorFlow documentation\. Valid values: float, range: \[`-1.0`, `1.0`\]\. Default value: `0.1`\. | |
| 12 | +| batch\_size | The batch size for training\. For training on instances with multiple GPUs, this batch size is used across the GPUs\. Valid values: positive integer\. Default value: `32`\. | |
| 13 | +| beta\_1 | The beta1 for the `"adam"` optimizer\. Represents the exponential decay rate for the first moment estimates\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.9`\. | |
| 14 | +| beta\_2 | The beta2 for the `"adam"` optimizer\. Represents the exponential decay rate for the second moment estimates\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.999`\. | |
| 15 | +| binary\_mode | When `binary_mode` is set to `"True"`, the model returns a single probability number for the positive class and can use additional `eval_metric` options\. Use only for binary classification problems\. Valid values: string, either: \(`"True"` or `"False"`\)\. Default value: `"False"`\. | |
| 16 | +| dropout\_rate | The dropout rate for the dropout layer in the top classification layer\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.2` | |
| 17 | +| early\_stopping | Set to `"True"` to use early stopping logic during training\. If `"False"`, early stopping is not used\. Valid values: string, either: \(`"True"` or `"False"`\)\. Default value: `"False"`\. | |
| 18 | +| early\_stopping\_min\_delta | The minimum change needed to qualify as an improvement\. An absolute change less than the value of early\_stopping\_delta does not qualify as improvement\. Used only when early\_stopping is set to "True"\.Valid values: float, range: \[`0.0`, `1.0`\]\.Default value: `0.0`\. | |
| 19 | +| early\_stopping\_patience | The number of epochs to continue training with no improvement\. Used only when `early_stopping` is set to `"True"`\. Valid values: positive integer\. Default value: `5`\. | |
| 20 | +| epochs | The number of training epochs\. Valid values: positive integer\. Default value: `3`\. | |
| 21 | +| epsilon | The epsilon for `"adam"`, `"rmsprop"`, `"adadelta"`, and `"adagrad"` optimizers\. Usually set to a small value to avoid division by 0\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `1e-7`\. | |
| 22 | +| eval\_metric | If `binary_mode` is set to `"False"`, `eval_metric` can only be `"accuracy"`\. If `binary_mode` is `"True"`, select any of the valid values\. For more information, see [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics) in the TensorFlow documentation\. Valid values: string, any of the following: \(`"accuracy"`, `"precision"`, `"recall"`, `"auc"`, or `"prc"`\)\. Default value: `"accuracy"`\. | |
| 23 | +| image\_resize\_interpolation | Indicates interpolation method used when resizing images\. For more information, see [image\.resize](https://www.tensorflow.org/api_docs/python/tf/image/resize) in the TensorFlow documentation\. Valid values: string, any of the following: \(`"bilinear"`, `"nearest"`, `"bicubic"`, `"area"`,` "lanczos3"` , `"lanczos5"`, `"gaussian"`, or `"mitchellcubic"`\)\. Default value: `"bilinear"`\. | |
| 24 | +| initial\_accumulator\_value | The starting value for the accumulators, or the per\-parameter momentum values, for the `"adagrad"` optimizer\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.0001`\. | |
| 25 | +| label\_smoothing | Indicates how much to relax the confidence on label values\. For example, if `label_smoothing` is `0.1`, then non\-target labels are `0.1/num_classes `and target labels are `0.9+0.1/num_classes`\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.1`\. | |
| 26 | +| learning\_rate | The optimizer learning rate\. Valid values: float, range: \[`0.0`, `1.0`\]\.Default value: `0.001`\. | |
| 27 | +| momentum | The momentum for `"sgd"`, `"nesterov"`, and `"rmsprop"` optimizers\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.9`\. | |
| 28 | +| optimizer | The optimizer type\. For more information, see [Optimizers](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) in the TensorFlow documentation\. Valid values: string, any of the following: \(`"adam"`, `"sgd"`, `"nesterov"`, `"rmsprop"`,` "adagrad"` , `"adadelta"`\)\. Default value: `"adam"`\. | |
| 29 | +| regularizers\_l2 | The L2 regularization factor for the dense layer in the classification layer\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `.0001`\. | |
| 30 | +| reinitialize\_top\_layer | If set to `"Auto"`, the top classification layer parameters are re\-initialized during fine\-tuning\. For incremental training, top classification layer parameters are not re\-initialized unless set to `"True"`\. Valid values: string, any of the following: \(`"Auto"`, `"True"` or `"False"`\)\. Default value: `"Auto"`\. | |
| 31 | +| rho | The discounting factor for the gradient of the `"adadelta"` and `"rmsprop"` optimizers\. Ignored for other optimizers\. Valid values: float, range: \[`0.0`, `1.0`\]\. Default value: `0.95`\. | |
| 32 | +| train\_only\_on\_top\_layer | If `"True"`, only the top classification layer parameters are fine\-tuned\. If `"False"`, all model parameters are fine\-tuned\. Valid values: string, either: \(`"True"` or `"False"`\)\. Default value: `"False"`\. | |
0 commit comments