@@ -332,14 +332,14 @@ def main():
332
332
# train_ds_w = monai.data.Dataset(data=train_files_w, transform=train_transforms)
333
333
# val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
334
334
335
- train_loader_a = ThreadDataLoader (train_ds_a , num_workers = 0 , batch_size = num_images_per_batch , shuffle = True )
336
- train_loader_w = ThreadDataLoader (train_ds_w , num_workers = 0 , batch_size = num_images_per_batch , shuffle = True )
337
- val_loader = ThreadDataLoader (val_ds , num_workers = 0 , batch_size = 1 , shuffle = False )
335
+ train_loader_a = ThreadDataLoader (train_ds_a , num_workers = 4 , batch_size = num_images_per_batch , shuffle = True )
336
+ train_loader_w = ThreadDataLoader (train_ds_w , num_workers = 4 , batch_size = num_images_per_batch , shuffle = True )
337
+ val_loader = ThreadDataLoader (val_ds , num_workers = 4 , batch_size = 1 , shuffle = False )
338
338
339
339
# DataLoader can be used as alternatives when ThreadDataLoader is less efficient.
340
- # train_loader_a = DataLoader(train_ds_a, batch_size=num_images_per_batch, shuffle=True, num_workers=2 , pin_memory=torch.cuda.is_available())
341
- # train_loader_w = DataLoader(train_ds_w, batch_size=num_images_per_batch, shuffle=True, num_workers=2 , pin_memory=torch.cuda.is_available())
342
- # val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2 , pin_memory=torch.cuda.is_available())
340
+ # train_loader_a = DataLoader(train_ds_a, batch_size=num_images_per_batch, shuffle=True, num_workers=4 , pin_memory=torch.cuda.is_available())
341
+ # train_loader_w = DataLoader(train_ds_w, batch_size=num_images_per_batch, shuffle=True, num_workers=4 , pin_memory=torch.cuda.is_available())
342
+ # val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=4 , pin_memory=torch.cuda.is_available())
343
343
344
344
dints_space = monai .networks .nets .TopologySearch (
345
345
channel_mul = 0.5 ,
0 commit comments