|
4527 | 4527 | \indextext{\idxcode{binomial_distribution}!discrete probability function}
|
4528 | 4528 | \[%
|
4529 | 4529 | P(i\,|\,t,p)
|
4530 |
| - = {t \choose i} \cdot p^i \cdot (1-p)^{t-i} |
| 4530 | + = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} |
4531 | 4531 | \; \mbox{.}
|
4532 | 4532 | \]
|
4533 | 4533 |
|
|
4689 | 4689 | \indextext{\idxcode{negative_binomial_distribution}!discrete probability function}
|
4690 | 4690 | \[%
|
4691 | 4691 | P(i\,|\,k,p)
|
4692 |
| - = {k+i-1 \choose i} \cdot p^k \cdot (1-p)^i |
| 4692 | + = \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i |
4693 | 4693 | \; \mbox{.}
|
4694 | 4694 | \]
|
4695 | 4695 |
|
|
4947 | 4947 | \indextext{\idxcode{gamma_distribution}!probability density function}
|
4948 | 4948 | \[%
|
4949 | 4949 | p(x\,|\,\alpha,\beta)
|
4950 |
| - = { e^{-x/\beta} |
4951 |
| - \over {\beta^{\alpha} \cdot \Gamma(\alpha)} |
4952 |
| - } |
| 4950 | + = \frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} |
4953 | 4951 | \, \cdot \, x^{\, \alpha-1}
|
4954 | 4952 | \; \mbox{.}
|
4955 | 4953 | \]
|
|
5237 | 5235 | \indextext{\idxcode{normal_distribution}!probability density function}
|
5238 | 5236 | \[%
|
5239 | 5237 | p(x\,|\,\mu,\sigma)
|
5240 |
| - = {1 \over \sigma \sqrt{2\pi}} |
| 5238 | + = \frac{1}{\sigma \sqrt{2\pi}} |
5241 | 5239 | \cdot
|
5242 | 5240 | % e^{-(x-\mu)^2 / (2\sigma^2)}
|
5243 | 5241 | \exp{\left(- \, \frac{(x - \mu)^2}
|
|
5969 | 5967 | the remaining $n$ distribution parameters are calculated as:
|
5970 | 5968 | \[%
|
5971 | 5969 | \rho_k = \;
|
5972 |
| - {w_k \over {S \cdot (b_{k+1}-b_k)}} |
| 5970 | + \frac{w_k}{S \cdot (b_{k+1}-b_k)} |
5973 | 5971 | \; \mbox{ for } k = 0, \ldots, n\!-\!1,
|
5974 | 5972 | \]
|
5975 | 5973 | in which the values $w_k$,
|
|
6175 | 6173 | \indextext{\idxcode{piecewise_linear_distribution}!probability density function}
|
6176 | 6174 | \[%
|
6177 | 6175 | p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
|
6178 |
| - = \rho_i \cdot {{b_{i+1} - x} \over {b_{i+1} - b_i}} |
6179 |
| - + \rho_{i+1} \cdot {{x - b_i} \over {b_{i+1} - b_i}} |
| 6176 | + = \rho_i \cdot {\frac{b_{i+1} - x}{b_{i+1} - b_i}} |
| 6177 | + + \rho_{i+1} \cdot {\frac{x - b_i}{b_{i+1} - b_i}} |
6180 | 6178 | \; \mbox{,}
|
6181 | 6179 | \mbox{ for } b_i \le x < b_{i+1}
|
6182 | 6180 | \; \mbox{.}
|
|
0 commit comments