Skip to content

Commit 0ff421f

Browse files
committed
[rand] Use modern spelling of \frac and \binom to remove LaTeX warning.
1 parent e2bf02a commit 0ff421f

File tree

1 file changed

+7
-9
lines changed

1 file changed

+7
-9
lines changed

source/numerics.tex

Lines changed: 7 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4527,7 +4527,7 @@
45274527
\indextext{\idxcode{binomial_distribution}!discrete probability function}
45284528
\[%
45294529
P(i\,|\,t,p)
4530-
= {t \choose i} \cdot p^i \cdot (1-p)^{t-i}
4530+
= \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i}
45314531
\; \mbox{.}
45324532
\]
45334533

@@ -4689,7 +4689,7 @@
46894689
\indextext{\idxcode{negative_binomial_distribution}!discrete probability function}
46904690
\[%
46914691
P(i\,|\,k,p)
4692-
= {k+i-1 \choose i} \cdot p^k \cdot (1-p)^i
4692+
= \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i
46934693
\; \mbox{.}
46944694
\]
46954695

@@ -4947,9 +4947,7 @@
49474947
\indextext{\idxcode{gamma_distribution}!probability density function}
49484948
\[%
49494949
p(x\,|\,\alpha,\beta)
4950-
= { e^{-x/\beta}
4951-
\over {\beta^{\alpha} \cdot \Gamma(\alpha)}
4952-
}
4950+
= \frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)}
49534951
\, \cdot \, x^{\, \alpha-1}
49544952
\; \mbox{.}
49554953
\]
@@ -5237,7 +5235,7 @@
52375235
\indextext{\idxcode{normal_distribution}!probability density function}
52385236
\[%
52395237
p(x\,|\,\mu,\sigma)
5240-
= {1 \over \sigma \sqrt{2\pi}}
5238+
= \frac{1}{\sigma \sqrt{2\pi}}
52415239
\cdot
52425240
% e^{-(x-\mu)^2 / (2\sigma^2)}
52435241
\exp{\left(- \, \frac{(x - \mu)^2}
@@ -5969,7 +5967,7 @@
59695967
the remaining $n$ distribution parameters are calculated as:
59705968
\[%
59715969
\rho_k = \;
5972-
{w_k \over {S \cdot (b_{k+1}-b_k)}}
5970+
\frac{w_k}{S \cdot (b_{k+1}-b_k)}
59735971
\; \mbox{ for } k = 0, \ldots, n\!-\!1,
59745972
\]
59755973
in which the values $w_k$,
@@ -6175,8 +6173,8 @@
61756173
\indextext{\idxcode{piecewise_linear_distribution}!probability density function}
61766174
\[%
61776175
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
6178-
= \rho_i \cdot {{b_{i+1} - x} \over {b_{i+1} - b_i}}
6179-
+ \rho_{i+1} \cdot {{x - b_i} \over {b_{i+1} - b_i}}
6176+
= \rho_i \cdot {\frac{b_{i+1} - x}{b_{i+1} - b_i}}
6177+
+ \rho_{i+1} \cdot {\frac{x - b_i}{b_{i+1} - b_i}}
61806178
\; \mbox{,}
61816179
\mbox{ for } b_i \le x < b_{i+1}
61826180
\; \mbox{.}

0 commit comments

Comments
 (0)