|
1192 | 1192 | \complexity No applications of the corresponding predicate if \tcode{ForwardIterator1}
|
1193 | 1193 | and \tcode{ForwardIter\-ator2} meet the requirements of random access iterators and
|
1194 | 1194 | \tcode{last1 - first1 != last2 - first2}.
|
1195 |
| -Otherwise, exactly \tcode{distance(first1, last1)} applications of the |
| 1195 | +Otherwise, exactly \tcode{last1 - first1} applications of the |
1196 | 1196 | corresponding predicate if \tcode{equal(\brk{}first1, last1, first2, last2)}
|
1197 | 1197 | would return \tcode{true} if \tcode{pred} was not given in the argument list
|
1198 | 1198 | or \tcode{equal(first1, last1, first2, last2, pred)} would return \tcode{true} if pred was given in the argument list; otherwise, at
|
1199 |
| -worst \bigoh{N^2}, where $N$ has the value \tcode{distance(first1, last1)}. |
| 1199 | +worst \bigoh{N^2}, where $N$ has the value \tcode{last1 - first1}. |
1200 | 1200 | \end{itemdescr}
|
1201 | 1201 |
|
1202 | 1202 | \rSec2[alg.search]{Search}
|
|
2433 | 2433 | if there exists an integer
|
2434 | 2434 | \tcode{n}
|
2435 | 2435 | such that for all
|
2436 |
| -\tcode{0 <= i < distance(start, finish)}, |
| 2436 | +\tcode{0 <= i < (finish - start)}, |
2437 | 2437 | \tcode{f(*(start + i))}
|
2438 | 2438 | is true if and only if
|
2439 | 2439 | \tcode{i < n}.
|
|
2659 | 2659 |
|
2660 | 2660 | \begin{itemdescr}
|
2661 | 2661 | \pnum
|
2662 |
| -\returns If \tcode{distance(first, last) < 2}, returns |
| 2662 | +\returns If \tcode{(last - first) < 2}, returns |
2663 | 2663 | \tcode{last}. Otherwise, returns
|
2664 | 2664 | the last iterator \tcode{i} in \crange{first}{last} for which the
|
2665 | 2665 | range \range{first}{i} is sorted.
|
|
3530 | 3530 |
|
3531 | 3531 | \begin{itemdescr}
|
3532 | 3532 | \pnum
|
3533 |
| -\returns If \tcode{distance(first, last) < 2}, returns |
| 3533 | +\returns If \tcode{(last - first) < 2}, returns |
3534 | 3534 | \tcode{last}. Otherwise, returns
|
3535 | 3535 | the last iterator \tcode{i} in \crange{first}{last} for which the
|
3536 | 3536 | range \range{first}{i} is a heap.
|
|
3794 | 3794 | \complexity
|
3795 | 3795 | At most
|
3796 | 3796 | $max(\lfloor{\frac{3}{2}} (N-1)\rfloor, 0)$
|
3797 |
| -applications of the corresponding predicate, where $N$ is \tcode{distance(first, last)}. |
| 3797 | +applications of the corresponding predicate, where $N$ is \tcode{last - first}. |
3798 | 3798 | \end{itemdescr}
|
3799 | 3799 |
|
3800 | 3800 | \rSec2[alg.lex.comparison]{Lexicographical comparison}
|
|
0 commit comments