|
307 | 307 | template<class T> T norm(const complex<T>&);
|
308 | 308 |
|
309 | 309 | template<class T> complex<T> conj(const complex<T>&);
|
310 |
| - template <class T> complex<T> proj(const complex<T>&); |
| 310 | + template<class T> complex<T> proj(const complex<T>&); |
311 | 311 | template<class T> complex<T> polar(const T&, const T& = 0);
|
312 | 312 |
|
313 | 313 | // \ref{complex.transcendentals}, transcendentals:
|
|
325 | 325 | template<class T> complex<T> log (const complex<T>&);
|
326 | 326 | template<class T> complex<T> log10(const complex<T>&);
|
327 | 327 |
|
328 |
| - template<class T> complex<T> pow(const complex<T>&, const T&); |
329 |
| - template<class T> complex<T> pow(const complex<T>&, const complex<T>&); |
330 |
| - template<class T> complex<T> pow(const T&, const complex<T>&); |
| 328 | + template<class T> complex<T> pow (const complex<T>&, const T&); |
| 329 | + template<class T> complex<T> pow (const complex<T>&, const complex<T>&); |
| 330 | + template<class T> complex<T> pow (const T&, const complex<T>&); |
331 | 331 |
|
332 | 332 | template<class T> complex<T> sin (const complex<T>&);
|
333 | 333 | template<class T> complex<T> sinh (const complex<T>&);
|
|
1119 | 1119 | \begin{itemdescr}
|
1120 | 1120 | \pnum
|
1121 | 1121 | \returns
|
1122 |
| -The complex base e exponential of \tcode{x}. |
| 1122 | +The complex base-$e$ exponential of \tcode{x}. |
1123 | 1123 | \end{itemdescr}
|
1124 | 1124 |
|
1125 | 1125 | \indexlibrary{\idxcode{log}!\idxcode{complex}}%
|
|
1130 | 1130 | \begin{itemdescr}
|
1131 | 1131 | \pnum
|
1132 | 1132 | \notes
|
1133 |
| -the branch cuts are along the negative real axis. |
| 1133 | +The branch cuts are along the negative real axis. |
1134 | 1134 |
|
1135 | 1135 | \pnum
|
1136 | 1136 | \returns
|
1137 |
| -The complex natural (base e) logarithm of \tcode{x}, |
1138 |
| -in the range of a strip mathematically unbounded along the |
1139 |
| -real axis and in the interval \crange{-i times pi}{i times pi} |
1140 |
| -along the imaginary axis. |
1141 |
| -When \tcode{x} is a negative real |
1142 |
| -number, |
1143 |
| -\tcode{imag(log(x))} |
1144 |
| -is pi. |
| 1137 | +The complex natural (base-$e$) logarithm of \tcode{x}. For all \tcode{x}, |
| 1138 | +\tcode{imag(log(x))} lies in the interval \crange{$-\pi$}{$\pi$}, and |
| 1139 | +when \tcode{x} is a negative real number, \tcode{imag(log(x))} is $\pi$. |
1145 | 1140 | \end{itemdescr}
|
1146 | 1141 |
|
1147 | 1142 | \indexlibrary{\idxcode{log10}!\idxcode{complex}}%
|
|
1152 | 1147 | \begin{itemdescr}
|
1153 | 1148 | \pnum
|
1154 | 1149 | \notes
|
1155 |
| -the branch cuts are along the negative real axis. |
| 1150 | +The branch cuts are along the negative real axis. |
1156 | 1151 |
|
1157 | 1152 | \pnum
|
1158 | 1153 | \returns
|
1159 |
| -The complex common (base 10) logarithm of \tcode{x}, defined as |
1160 |
| -\tcode{log(x)/log(10)}. |
| 1154 | +The complex common (base-$10$) logarithm of \tcode{x}, defined as |
| 1155 | +\tcode{log(x) / log(10)}. |
1161 | 1156 | \end{itemdescr}
|
1162 | 1157 |
|
1163 | 1158 | \indexlibrary{\idxcode{pow}!\idxcode{complex}}%
|
1164 | 1159 | \begin{itemdecl}
|
1165 |
| -template<class T> |
1166 |
| - complex<T> pow(const complex<T>& x, const complex<T>& y); |
1167 |
| -template<class T> complex<T> pow (const complex<T>& x, const T& y); |
1168 |
| -template<class T> complex<T> pow (const T& x, const complex<T>& y); |
| 1160 | +template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y); |
| 1161 | +template<class T> complex<T> pow(const complex<T>& x, const T& y); |
| 1162 | +template<class T> complex<T> pow(const T& x, const complex<T>& y); |
1169 | 1163 | \end{itemdecl}
|
1170 | 1164 |
|
1171 | 1165 | \begin{itemdescr}
|
1172 | 1166 | \pnum
|
1173 | 1167 | \notes
|
1174 |
| -the branch cuts are along the negative real axis. |
| 1168 | +The branch cuts are along the negative real axis. |
1175 | 1169 |
|
1176 | 1170 | \pnum
|
1177 | 1171 | \returns
|
1178 |
| -The complex power of base \tcode{x} raised to the \tcode{y}-th power, |
| 1172 | +The complex power of base \tcode{x} raised to the \tcode{y}$^\text{th}$ power, |
1179 | 1173 | defined as
|
1180 |
| -\tcode{exp(y*log(x))}. |
| 1174 | +\tcode{exp(y * log(x))}. |
1181 | 1175 | The value returned for
|
1182 |
| -\tcode{pow(0,0)} |
| 1176 | +\tcode{pow(0, 0)} |
1183 | 1177 | is implementation-defined.
|
1184 | 1178 | \end{itemdescr}
|
1185 | 1179 |
|
1186 | 1180 | \indexlibrary{\idxcode{sin}!\idxcode{complex}}%
|
1187 | 1181 | \begin{itemdecl}
|
1188 |
| -template<class T> complex<T> sin (const complex<T>& x); |
| 1182 | +template<class T> complex<T> sin(const complex<T>& x); |
1189 | 1183 | \end{itemdecl}
|
1190 | 1184 |
|
1191 | 1185 | \begin{itemdescr}
|
|
1196 | 1190 |
|
1197 | 1191 | \indexlibrary{\idxcode{sinh}!\idxcode{complex}}%
|
1198 | 1192 | \begin{itemdecl}
|
1199 |
| -template<class T> complex<T> sinh (const complex<T>& x); |
| 1193 | +template<class T> complex<T> sinh(const complex<T>& x); |
1200 | 1194 | \end{itemdecl}
|
1201 | 1195 |
|
1202 | 1196 | \begin{itemdescr}
|
|
1207 | 1201 |
|
1208 | 1202 | \indexlibrary{\idxcode{sqrt}!\idxcode{complex}}%
|
1209 | 1203 | \begin{itemdecl}
|
1210 |
| -template<class T> complex<T> sqrt (const complex<T>& x); |
| 1204 | +template<class T> complex<T> sqrt(const complex<T>& x); |
1211 | 1205 | \end{itemdecl}
|
1212 | 1206 |
|
1213 | 1207 | \begin{itemdescr}
|
1214 | 1208 | \pnum
|
1215 | 1209 | \notes
|
1216 |
| -the branch cuts are along the negative real axis. |
| 1210 | +The branch cuts are along the negative real axis. |
1217 | 1211 |
|
1218 | 1212 | \pnum
|
1219 | 1213 | \returns
|
|
1225 | 1219 |
|
1226 | 1220 | \indexlibrary{\idxcode{tan}!\idxcode{complex}}%
|
1227 | 1221 | \begin{itemdecl}
|
1228 |
| -template<class T> complex<T> tan (const complex<T>& x); |
| 1222 | +template<class T> complex<T> tan(const complex<T>& x); |
1229 | 1223 | \end{itemdecl}
|
1230 | 1224 |
|
1231 | 1225 | \begin{itemdescr}
|
|
1236 | 1230 |
|
1237 | 1231 | \indexlibrary{\idxcode{tanh}!\idxcode{complex}}%
|
1238 | 1232 | \begin{itemdecl}
|
1239 |
| -template<class T> complex<T> tanh (const complex<T>& x); |
| 1233 | +template<class T> complex<T> tanh(const complex<T>& x); |
1240 | 1234 | \end{itemdecl}
|
1241 | 1235 |
|
1242 | 1236 | \begin{itemdescr}
|
|
0 commit comments