|
1201 | 1201 | \complexity No applications of the corresponding predicate if \tcode{ForwardIterator1}
|
1202 | 1202 | and \tcode{ForwardIter\-ator2} meet the requirements of random access iterators and
|
1203 | 1203 | \tcode{last1 - first1 != last2 - first2}.
|
1204 |
| -Otherwise, exactly \tcode{distance(first1, last1)} applications of the |
| 1204 | +Otherwise, exactly \tcode{last1 - first1} applications of the |
1205 | 1205 | corresponding predicate if \tcode{equal(\brk{}first1, last1, first2, last2)}
|
1206 | 1206 | would return \tcode{true} if \tcode{pred} was not given in the argument list
|
1207 | 1207 | or \tcode{equal(first1, last1, first2, last2, pred)} would return \tcode{true} if pred was given in the argument list; otherwise, at
|
1208 |
| -worst \bigoh{N^2}, where $N$ has the value \tcode{distance(first1, last1)}. |
| 1208 | +worst \bigoh{N^2}, where $N$ has the value \tcode{last1 - first1}. |
1209 | 1209 | \end{itemdescr}
|
1210 | 1210 |
|
1211 | 1211 | \rSec2[alg.search]{Search}
|
|
2441 | 2441 | if there exists an integer
|
2442 | 2442 | \tcode{n}
|
2443 | 2443 | such that for all
|
2444 |
| -\tcode{0 <= i < distance(start, finish)}, |
| 2444 | +\tcode{0 <= i < (finish - start)}, |
2445 | 2445 | \tcode{f(*(start + i))}
|
2446 | 2446 | is true if and only if
|
2447 | 2447 | \tcode{i < n}.
|
|
2667 | 2667 |
|
2668 | 2668 | \begin{itemdescr}
|
2669 | 2669 | \pnum
|
2670 |
| -\returns If \tcode{distance(first, last) < 2}, returns |
| 2670 | +\returns If \tcode{(last - first) < 2}, returns |
2671 | 2671 | \tcode{last}. Otherwise, returns
|
2672 | 2672 | the last iterator \tcode{i} in \crange{first}{last} for which the
|
2673 | 2673 | range \range{first}{i} is sorted.
|
|
3538 | 3538 |
|
3539 | 3539 | \begin{itemdescr}
|
3540 | 3540 | \pnum
|
3541 |
| -\returns If \tcode{distance(first, last) < 2}, returns |
| 3541 | +\returns If \tcode{(last - first) < 2}, returns |
3542 | 3542 | \tcode{last}. Otherwise, returns
|
3543 | 3543 | the last iterator \tcode{i} in \crange{first}{last} for which the
|
3544 | 3544 | range \range{first}{i} is a heap.
|
|
3788 | 3788 | \complexity
|
3789 | 3789 | At most
|
3790 | 3790 | $max(\lfloor{\frac{3}{2}} (N-1)\rfloor, 0)$
|
3791 |
| -applications of the corresponding predicate, where $N$ is \tcode{distance(first, last)}. |
| 3791 | +applications of the corresponding predicate, where $N$ is \tcode{last - first}. |
3792 | 3792 | \end{itemdescr}
|
3793 | 3793 |
|
3794 | 3794 | \rSec2[alg.lex.comparison]{Lexicographical comparison}
|
|
0 commit comments