|
84 | 84 | },
|
85 | 85 | {
|
86 | 86 | "cell_type": "code",
|
87 |
| - "execution_count": 3, |
| 87 | + "execution_count": 4, |
88 | 88 | "metadata": {},
|
89 | 89 | "outputs": [
|
90 | 90 | {
|
|
260 | 260 | " -> Int(2)\n",
|
261 | 261 | "unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY))))[Int(0)].shape[Int(0)]\n",
|
262 | 262 | "unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY))))[Int(0)].shape[Int(0)]\n",
|
263 |
| - " -> unique_inverse(reshape(NDArray.var(\"y\"), TupleInt(Int(-1))))[Int(0)].shape[Int(0)]\n", |
264 |
| - " -> unique_inverse(NDArray.var(\"y\"))[Int(0)].shape[Int(0)]\n" |
| 263 | + " -> unique_values(reshape(NDArray.var(\"y\"), TupleInt(Int(-1)))).shape[Int(0)]\n", |
| 264 | + " -> Int(3)\n" |
265 | 265 | ]
|
266 | 266 | },
|
267 | 267 | {
|
268 |
| - "ename": "EggSmolError", |
269 |
| - "evalue": "Not found: fake expression Int.to_py [Value { tag: \"Int\", bits: 133 }]", |
| 268 | + "ename": "AttributeError", |
| 269 | + "evalue": "module '__main__' has no attribute 'mean'", |
270 | 270 | "output_type": "error",
|
271 | 271 | "traceback": [
|
272 | 272 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
273 |
| - "\u001b[0;31mEggSmolError\u001b[0m Traceback (most recent call last)", |
274 |
| - "Cell \u001b[0;32mIn[3], line 680\u001b[0m\n\u001b[1;32m 666\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 667\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 668\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 669\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 676\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 677\u001b[0m )\n\u001b[0;32m--> 680\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 682\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 683\u001b[0m \n\u001b[1;32m 684\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 685\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
| 273 | + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", |
| 274 | + "Cell \u001b[0;32mIn[4], line 682\u001b[0m\n\u001b[1;32m 668\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 669\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 670\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 671\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 678\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 679\u001b[0m )\n\u001b[0;32m--> 682\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 684\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 685\u001b[0m \n\u001b[1;32m 686\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 687\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
275 | 275 | "Cell \u001b[0;32mIn[1], line 15\u001b[0m, in \u001b[0;36mfit\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[39mwith\u001b[39;00m config_context(array_api_dispatch\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m):\n\u001b[1;32m 14\u001b[0m lda \u001b[39m=\u001b[39m LinearDiscriminantAnalysis(n_components\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m)\n\u001b[0;32m---> 15\u001b[0m X_r2 \u001b[39m=\u001b[39m lda\u001b[39m.\u001b[39;49mfit(X, y)\u001b[39m.\u001b[39mtransform(X)\n\u001b[1;32m 16\u001b[0m \u001b[39mreturn\u001b[39;00m X_r2\n\u001b[1;32m 18\u001b[0m target_names \u001b[39m=\u001b[39m iris\u001b[39m.\u001b[39mtarget_names\n",
|
276 | 276 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/base.py:1151\u001b[0m, in \u001b[0;36m_fit_context.<locals>.decorator.<locals>.wrapper\u001b[0;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1144\u001b[0m estimator\u001b[39m.\u001b[39m_validate_params()\n\u001b[1;32m 1146\u001b[0m \u001b[39mwith\u001b[39;00m config_context(\n\u001b[1;32m 1147\u001b[0m skip_parameter_validation\u001b[39m=\u001b[39m(\n\u001b[1;32m 1148\u001b[0m prefer_skip_nested_validation \u001b[39mor\u001b[39;00m global_skip_validation\n\u001b[1;32m 1149\u001b[0m )\n\u001b[1;32m 1150\u001b[0m ):\n\u001b[0;32m-> 1151\u001b[0m \u001b[39mreturn\u001b[39;00m fit_method(estimator, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
|
277 | 277 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:629\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 624\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 625\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mcovariance estimator \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 626\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mis not supported \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 627\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mwith svd solver. Try another solver\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 628\u001b[0m )\n\u001b[0;32m--> 629\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_solve_svd(X, y)\n\u001b[1;32m 630\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolver \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mlsqr\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 631\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_solve_lstsq(\n\u001b[1;32m 632\u001b[0m X,\n\u001b[1;32m 633\u001b[0m y,\n\u001b[1;32m 634\u001b[0m shrinkage\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mshrinkage,\n\u001b[1;32m 635\u001b[0m covariance_estimator\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator,\n\u001b[1;32m 636\u001b[0m )\n",
|
278 | 278 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:501\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis._solve_svd\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 498\u001b[0m n_samples, n_features \u001b[39m=\u001b[39m X\u001b[39m.\u001b[39mshape\n\u001b[1;32m 499\u001b[0m n_classes \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclasses_\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]\n\u001b[0;32m--> 501\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmeans_ \u001b[39m=\u001b[39m _class_means(X, y)\n\u001b[1;32m 502\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstore_covariance:\n\u001b[1;32m 503\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_ \u001b[39m=\u001b[39m _class_cov(X, y, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpriors_)\n",
|
279 |
| - "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:120\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[39mif\u001b[39;00m is_array_api_compliant:\n\u001b[1;32m 119\u001b[0m \u001b[39mprint\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[0;32m--> 120\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39;49m(classes\u001b[39m.\u001b[39;49mshape[\u001b[39m0\u001b[39;49m]):\n\u001b[1;32m 121\u001b[0m means[i, :] \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39mmean(X[y \u001b[39m==\u001b[39m i], axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m 122\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 123\u001b[0m \u001b[39m# TODO: Explore the choice of using bincount + add.at as it seems sub optimal\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# from a performance-wise\u001b[39;00m\n", |
280 |
| - "File \u001b[0;32m~/p/egg-smol-python/python/egglog/runtime.py:403\u001b[0m, in \u001b[0;36m_preserved_method\u001b[0;34m(self, __name)\u001b[0m\n\u001b[1;32m 401\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[1;32m 402\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_typed_expr__\u001b[39m.\u001b[39mtp\u001b[39m.\u001b[39mname\u001b[39m}\u001b[39;00m\u001b[39m has no method \u001b[39m\u001b[39m{\u001b[39;00m__name\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 403\u001b[0m \u001b[39mreturn\u001b[39;00m method(\u001b[39mself\u001b[39;49m)\n", |
281 |
| - "Cell \u001b[0;32mIn[3], line 198\u001b[0m, in \u001b[0;36mInt.__index__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 196\u001b[0m \u001b[39m@egraph\u001b[39m\u001b[39m.\u001b[39mmethod(preserve\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m 197\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__index__\u001b[39m(\u001b[39mself\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mint\u001b[39m:\n\u001b[0;32m--> 198\u001b[0m \u001b[39mreturn\u001b[39;00m extract_py(\u001b[39mself\u001b[39;49m)\n", |
282 |
| - "Cell \u001b[0;32mIn[3], line 33\u001b[0m, in \u001b[0;36mextract_py\u001b[0;34m(e)\u001b[0m\n\u001b[1;32m 31\u001b[0m egraph\u001b[39m.\u001b[39mrun((run(runtime_ruleset, limit\u001b[39m=\u001b[39m\u001b[39m10\u001b[39m) \u001b[39m+\u001b[39m run(limit\u001b[39m=\u001b[39m\u001b[39m10\u001b[39m))\u001b[39m.\u001b[39msaturate())\n\u001b[1;32m 32\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m -> \u001b[39m\u001b[39m{\u001b[39;00megraph\u001b[39m.\u001b[39mextract(final_object)\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 33\u001b[0m res \u001b[39m=\u001b[39m egraph\u001b[39m.\u001b[39mload_object(egraph\u001b[39m.\u001b[39;49mextract(final_object\u001b[39m.\u001b[39;49mto_py()))\n\u001b[1;32m 34\u001b[0m \u001b[39mreturn\u001b[39;00m res\n", |
283 |
| - "File \u001b[0;32m~/p/egg-smol-python/python/egglog/egraph.py:737\u001b[0m, in \u001b[0;36mEGraph.extract\u001b[0;34m(self, expr)\u001b[0m\n\u001b[1;32m 735\u001b[0m typed_expr \u001b[39m=\u001b[39m expr_parts(expr)\n\u001b[1;32m 736\u001b[0m egg_expr \u001b[39m=\u001b[39m typed_expr\u001b[39m.\u001b[39mto_egg(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_mod_decls)\n\u001b[0;32m--> 737\u001b[0m extract_report \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_run_extract(egg_expr, \u001b[39m0\u001b[39;49m)\n\u001b[1;32m 738\u001b[0m new_typed_expr \u001b[39m=\u001b[39m TypedExprDecl\u001b[39m.\u001b[39mfrom_egg(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_mod_decls, extract_report\u001b[39m.\u001b[39mexpr)\n\u001b[1;32m 739\u001b[0m \u001b[39mif\u001b[39;00m new_typed_expr\u001b[39m.\u001b[39mtp \u001b[39m!=\u001b[39m typed_expr\u001b[39m.\u001b[39mtp:\n", |
284 |
| - "File \u001b[0;32m~/p/egg-smol-python/python/egglog/egraph.py:754\u001b[0m, in \u001b[0;36mEGraph._run_extract\u001b[0;34m(self, expr, n)\u001b[0m\n\u001b[1;32m 753\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_run_extract\u001b[39m(\u001b[39mself\u001b[39m, expr: bindings\u001b[39m.\u001b[39m_Expr, n: \u001b[39mint\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m bindings\u001b[39m.\u001b[39mExtractReport:\n\u001b[0;32m--> 754\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_process_commands([bindings\u001b[39m.\u001b[39;49mExtract(n, expr)])\n\u001b[1;32m 755\u001b[0m extract_report \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_egraph\u001b[39m.\u001b[39mextract_report()\n\u001b[1;32m 756\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m extract_report:\n", |
285 |
| - "File \u001b[0;32m~/p/egg-smol-python/python/egglog/egraph.py:634\u001b[0m, in \u001b[0;36mEGraph._process_commands\u001b[0;34m(self, commands)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_process_commands\u001b[39m(\u001b[39mself\u001b[39m, commands: Iterable[bindings\u001b[39m.\u001b[39m_Command]) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 634\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_egraph\u001b[39m.\u001b[39;49mrun_program(\u001b[39m*\u001b[39;49mcommands)\n", |
286 |
| - "\u001b[0;31mEggSmolError\u001b[0m: Not found: fake expression Int.to_py [Value { tag: \"Int\", bits: 133 }]" |
| 279 | + "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:121\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[39mprint\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[1;32m 120\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]):\n\u001b[0;32m--> 121\u001b[0m means[i, :] \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39;49mmean(X[y \u001b[39m==\u001b[39m i], axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m 122\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 123\u001b[0m \u001b[39m# TODO: Explore the choice of using bincount + add.at as it seems sub optimal\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# from a performance-wise\u001b[39;00m\n\u001b[1;32m 125\u001b[0m cnt \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mbincount(y)\n", |
| 280 | + "\u001b[0;31mAttributeError\u001b[0m: module '__main__' has no attribute 'mean'" |
287 | 281 | ]
|
288 | 282 | }
|
289 | 283 | ],
|
|
897 | 891 | "def _unique_inverse(x: NDArray):\n",
|
898 | 892 | " return [\n",
|
899 | 893 | " rewrite(unique_inverse(x).length()).to(Int(2)),\n",
|
| 894 | + " # Shape of unique_inverse first element is same as shape of unique_values\n", |
| 895 | + " rewrite(unique_inverse(x)[Int(0)].shape).to(unique_values(x).shape),\n", |
900 | 896 | " ]\n",
|
901 | 897 | "\n",
|
902 | 898 | "@egraph.function\n",
|
|
975 | 971 | "# y_arr = NDArray(y_obj)"
|
976 | 972 | ]
|
977 | 973 | },
|
978 |
| - { |
979 |
| - "cell_type": "code", |
980 |
| - "execution_count": null, |
981 |
| - "metadata": {}, |
982 |
| - "outputs": [], |
983 |
| - "source": [ |
984 |
| - "x = unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY))))[Int(0)].shape[Int(0)]\n" |
985 |
| - ] |
986 |
| - }, |
987 |
| - { |
988 |
| - "cell_type": "code", |
989 |
| - "execution_count": null, |
990 |
| - "metadata": {}, |
991 |
| - "outputs": [ |
992 |
| - { |
993 |
| - "ename": "TypeError", |
994 |
| - "evalue": "'RuntimeExpr' object cannot be interpreted as an integer", |
995 |
| - "output_type": "error", |
996 |
| - "traceback": [ |
997 |
| - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
998 |
| - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
999 |
| - "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[39mrange\u001b[39;49m(Int(\u001b[39m10\u001b[39;49m))\n", |
1000 |
| - "\u001b[0;31mTypeError\u001b[0m: 'RuntimeExpr' object cannot be interpreted as an integer" |
1001 |
| - ] |
1002 |
| - } |
1003 |
| - ], |
1004 |
| - "source": [ |
1005 |
| - "range(Int(10))" |
1006 |
| - ] |
1007 |
| - }, |
1008 | 974 | {
|
1009 | 975 | "cell_type": "code",
|
1010 | 976 | "execution_count": null,
|
|
0 commit comments