|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 3 | + |
| 4 | +import warnings |
| 5 | +from typing import Tuple, Union |
| 6 | +import torch |
| 7 | + |
| 8 | +from pytorch3d.structures.pointclouds import Pointclouds |
| 9 | + |
| 10 | + |
| 11 | +def corresponding_points_alignment( |
| 12 | + X: Union[torch.Tensor, Pointclouds], |
| 13 | + Y: Union[torch.Tensor, Pointclouds], |
| 14 | + estimate_scale: bool = False, |
| 15 | + allow_reflection: bool = False, |
| 16 | + eps: float = 1e-8, |
| 17 | +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
| 18 | + """ |
| 19 | + Finds a similarity transformation (rotation `R`, translation `T` |
| 20 | + and optionally scale `s`) between two given sets of corresponding |
| 21 | + `d`-dimensional points `X` and `Y` such that: |
| 22 | +
|
| 23 | + `s[i] X[i] R[i] + T[i] = Y[i]`, |
| 24 | +
|
| 25 | + for all batch indexes `i` in the least squares sense. |
| 26 | +
|
| 27 | + The algorithm is also known as Umeyama [1]. |
| 28 | +
|
| 29 | + Args: |
| 30 | + X: Batch of `d`-dimensional points of shape `(minibatch, num_point, d)` |
| 31 | + or a `Pointclouds` object. |
| 32 | + Y: Batch of `d`-dimensional points of shape `(minibatch, num_point, d)` |
| 33 | + or a `Pointclouds` object. |
| 34 | + estimate_scale: If `True`, also estimates a scaling component `s` |
| 35 | + of the transformation. Otherwise assumes an identity |
| 36 | + scale and returns a tensor of ones. |
| 37 | + allow_reflection: If `True`, allows the algorithm to return `R` |
| 38 | + which is orthonormal but has determinant==-1. |
| 39 | + eps: A scalar for clamping to avoid dividing by zero. Active for the |
| 40 | + code that estimates the output scale `s`. |
| 41 | +
|
| 42 | + Returns: |
| 43 | + 3-element tuple containing |
| 44 | + - **R**: Batch of orthonormal matrices of shape `(minibatch, d, d)`. |
| 45 | + - **T**: Batch of translations of shape `(minibatch, d)`. |
| 46 | + - **s**: batch of scaling factors of shape `(minibatch, )`. |
| 47 | +
|
| 48 | + References: |
| 49 | + [1] Shinji Umeyama: Least-Suqares Estimation of |
| 50 | + Transformation Parameters Between Two Point Patterns |
| 51 | + """ |
| 52 | + |
| 53 | + # make sure we convert input Pointclouds structures to tensors |
| 54 | + Xt, num_points = _convert_point_cloud_to_tensor(X) |
| 55 | + Yt, num_points_Y = _convert_point_cloud_to_tensor(Y) |
| 56 | + |
| 57 | + if (Xt.shape != Yt.shape) or (num_points != num_points_Y).any(): |
| 58 | + raise ValueError( |
| 59 | + "Point sets X and Y have to have the same \ |
| 60 | + number of batches, points and dimensions." |
| 61 | + ) |
| 62 | + |
| 63 | + b, n, dim = Xt.shape |
| 64 | + |
| 65 | + # compute the centroids of the point sets |
| 66 | + Xmu = Xt.sum(1) / torch.clamp(num_points[:, None], 1) |
| 67 | + Ymu = Yt.sum(1) / torch.clamp(num_points[:, None], 1) |
| 68 | + |
| 69 | + # mean-center the point sets |
| 70 | + Xc = Xt - Xmu[:, None] |
| 71 | + Yc = Yt - Ymu[:, None] |
| 72 | + |
| 73 | + if (num_points < Xt.shape[1]).any() or (num_points < Yt.shape[1]).any(): |
| 74 | + # in case we got Pointclouds as input, mask the unused entries in Xc, Yc |
| 75 | + mask = ( |
| 76 | + torch.arange(n, dtype=torch.int64, device=Xc.device)[None] |
| 77 | + < num_points[:, None] |
| 78 | + ).type_as(Xc) |
| 79 | + Xc *= mask[:, :, None] |
| 80 | + Yc *= mask[:, :, None] |
| 81 | + |
| 82 | + if (num_points < (dim + 1)).any(): |
| 83 | + warnings.warn( |
| 84 | + "The size of one of the point clouds is <= dim+1. " |
| 85 | + + "corresponding_points_alignment can't return a unique solution." |
| 86 | + ) |
| 87 | + |
| 88 | + # compute the covariance XYcov between the point sets Xc, Yc |
| 89 | + XYcov = torch.bmm(Xc.transpose(2, 1), Yc) |
| 90 | + XYcov = XYcov / torch.clamp(num_points[:, None, None], 1) |
| 91 | + |
| 92 | + # decompose the covariance matrix XYcov |
| 93 | + U, S, V = torch.svd(XYcov) |
| 94 | + |
| 95 | + # identity matrix used for fixing reflections |
| 96 | + E = torch.eye(dim, dtype=XYcov.dtype, device=XYcov.device)[None].repeat( |
| 97 | + b, 1, 1 |
| 98 | + ) |
| 99 | + |
| 100 | + if not allow_reflection: |
| 101 | + # reflection test: |
| 102 | + # checks whether the estimated rotation has det==1, |
| 103 | + # if not, finds the nearest rotation s.t. det==1 by |
| 104 | + # flipping the sign of the last singular vector U |
| 105 | + R_test = torch.bmm(U, V.transpose(2, 1)) |
| 106 | + E[:, -1, -1] = torch.det(R_test) |
| 107 | + |
| 108 | + # find the rotation matrix by composing U and V again |
| 109 | + R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1)) |
| 110 | + |
| 111 | + if estimate_scale: |
| 112 | + # estimate the scaling component of the transformation |
| 113 | + trace_ES = (torch.diagonal(E, dim1=1, dim2=2) * S).sum(1) |
| 114 | + Xcov = (Xc * Xc).sum((1, 2)) / torch.clamp(num_points, 1) |
| 115 | + |
| 116 | + # the scaling component |
| 117 | + s = trace_ES / torch.clamp(Xcov, eps) |
| 118 | + |
| 119 | + # translation component |
| 120 | + T = Ymu - s[:, None] * torch.bmm(Xmu[:, None], R)[:, 0, :] |
| 121 | + |
| 122 | + else: |
| 123 | + # translation component |
| 124 | + T = Ymu - torch.bmm(Xmu[:, None], R)[:, 0] |
| 125 | + |
| 126 | + # unit scaling since we do not estimate scale |
| 127 | + s = T.new_ones(b) |
| 128 | + |
| 129 | + return R, T, s |
| 130 | + |
| 131 | + |
| 132 | +def _convert_point_cloud_to_tensor(pcl: Union[torch.Tensor, Pointclouds]): |
| 133 | + """ |
| 134 | + If `type(pcl)==Pointclouds`, converts a `pcl` object to a |
| 135 | + padded representation and returns it together with the number of points |
| 136 | + per batch. Otherwise, returns the input itself with the number of points |
| 137 | + set to the size of the second dimension of `pcl`. |
| 138 | + """ |
| 139 | + if isinstance(pcl, Pointclouds): |
| 140 | + X = pcl.points_padded() |
| 141 | + num_points = pcl.num_points_per_cloud() |
| 142 | + elif torch.is_tensor(pcl): |
| 143 | + X = pcl |
| 144 | + num_points = X.shape[1] * torch.ones( |
| 145 | + X.shape[0], device=X.device, dtype=torch.int64 |
| 146 | + ) |
| 147 | + else: |
| 148 | + raise ValueError( |
| 149 | + "The inputs X, Y should be either Pointclouds objects or tensors." |
| 150 | + ) |
| 151 | + return X, num_points |
0 commit comments