|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | + |
| 3 | +from typing import Dict, List, Optional, Tuple |
| 4 | + |
| 5 | +import torch |
| 6 | +from pytorch3d.ops.marching_cubes_data import EDGE_TABLE, EDGE_TO_VERTICES, FACE_TABLE |
| 7 | +from pytorch3d.transforms import Translate |
| 8 | + |
| 9 | + |
| 10 | +EPS = 0.00001 |
| 11 | + |
| 12 | + |
| 13 | +class Cube: |
| 14 | + def __init__(self, bfl_vertex: Tuple[int, int, int], spacing: int = 1): |
| 15 | + """ |
| 16 | + Initializes a cube given the bottom front left vertex coordinate |
| 17 | + and the cube spacing |
| 18 | +
|
| 19 | + Edge and vertex convention: |
| 20 | +
|
| 21 | + v4_______e4____________v5 |
| 22 | + /| /| |
| 23 | + / | / | |
| 24 | + e7/ | e5/ | |
| 25 | + /___|______e6_________/ | |
| 26 | + v7| | |v6 |e9 |
| 27 | + | | | | |
| 28 | + | |e8 |e10| |
| 29 | + e11| | | | |
| 30 | + | |_________________|___| |
| 31 | + | / v0 e0 | /v1 |
| 32 | + | / | / |
| 33 | + | /e3 | /e1 |
| 34 | + |/_____________________|/ |
| 35 | + v3 e2 v2 |
| 36 | +
|
| 37 | + Args: |
| 38 | + bfl_vertex: a tuple of size 3 corresponding to the bottom front left vertex |
| 39 | + of the cube in (x, y, z) format |
| 40 | + spacing: the length of each edge of the cube |
| 41 | + """ |
| 42 | + # match corner orders to algorithm convention |
| 43 | + if len(bfl_vertex) != 3: |
| 44 | + msg = "The vertex {} is size {} instead of size 3".format( |
| 45 | + bfl_vertex, len(bfl_vertex) |
| 46 | + ) |
| 47 | + raise ValueError(msg) |
| 48 | + |
| 49 | + x, y, z = bfl_vertex |
| 50 | + self.vertices = torch.tensor( |
| 51 | + [ |
| 52 | + [x, y, z + spacing], |
| 53 | + [x + spacing, y, z + spacing], |
| 54 | + [x + spacing, y, z], |
| 55 | + [x, y, z], |
| 56 | + [x, y + spacing, z + spacing], |
| 57 | + [x + spacing, y + spacing, z + spacing], |
| 58 | + [x + spacing, y + spacing, z], |
| 59 | + [x, y + spacing, z], |
| 60 | + ] |
| 61 | + ) |
| 62 | + |
| 63 | + def get_index(self, volume_data: torch.Tensor, isolevel: float) -> int: |
| 64 | + """ |
| 65 | + Calculates the cube_index in the range 0-255 to index |
| 66 | + into EDGE_TABLE and FACE_TABLE |
| 67 | + Args: |
| 68 | + volume_data: the 3D scalar data |
| 69 | + isolevel: the isosurface value used as a threshold |
| 70 | + for determining whether a point is inside/outside |
| 71 | + the volume |
| 72 | + """ |
| 73 | + cube_index = 0 |
| 74 | + bit = 1 |
| 75 | + for index in range(len(self.vertices)): |
| 76 | + vertex = self.vertices[index] |
| 77 | + value = _get_value(vertex, volume_data) |
| 78 | + if value < isolevel: |
| 79 | + cube_index |= bit |
| 80 | + bit *= 2 |
| 81 | + return cube_index |
| 82 | + |
| 83 | + |
| 84 | +def marching_cubes_naive( |
| 85 | + volume_data_batch: torch.Tensor, |
| 86 | + isolevel: Optional[float] = None, |
| 87 | + spacing: int = 1, |
| 88 | + return_local_coords: bool = True, |
| 89 | +) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: |
| 90 | + """ |
| 91 | + Runs the classic marching cubes algorithm, iterating over |
| 92 | + the coordinates of the volume_data and using a given isolevel |
| 93 | + for determining intersected edges of cubes of size `spacing`. |
| 94 | + Returns vertices and faces of the obtained mesh. |
| 95 | + This operation is non-differentiable. |
| 96 | +
|
| 97 | + This is a naive implementation, and is not optimized for efficiency. |
| 98 | +
|
| 99 | + Args: |
| 100 | + volume_data_batch: a Tensor of size (N, D, H, W) corresponding to |
| 101 | + a batch of 3D scalar fields |
| 102 | + isolevel: the isosurface value to use as the threshold to determine |
| 103 | + whether points are within a volume. If None, then the average of the |
| 104 | + maximum and minimum value of the scalar field will be used. |
| 105 | + spacing: an integer specifying the cube size to use |
| 106 | + return_local_coords: bool. If True the output vertices will be in local coordinates in |
| 107 | + the range [-1, 1] x [-1, 1] x [-1, 1]. If False they will be in the range |
| 108 | + [0, W-1] x [0, H-1] x [0, D-1] |
| 109 | + Returns: |
| 110 | + verts: [(V_0, 3), (V_1, 3), ...] List of N FloatTensors of vertices. |
| 111 | + faces: [(F_0, 3), (F_1, 3), ...] List of N LongTensors of faces. |
| 112 | + """ |
| 113 | + volume_data_batch = volume_data_batch.detach().cpu() |
| 114 | + batched_verts, batched_faces = [], [] |
| 115 | + D, H, W = volume_data_batch.shape[1:] |
| 116 | + # pyre-ignore [16] |
| 117 | + volume_size_xyz = volume_data_batch.new_tensor([W, H, D])[None] |
| 118 | + |
| 119 | + if return_local_coords: |
| 120 | + # Convert from local coordinates in the range [-1, 1] range to |
| 121 | + # world coordinates in the range [0, D-1], [0, H-1], [0, W-1] |
| 122 | + local_to_world_transform = Translate( |
| 123 | + x=+1.0, y=+1.0, z=+1.0, device=volume_data_batch.device |
| 124 | + ).scale((volume_size_xyz - 1) * spacing * 0.5) |
| 125 | + # Perform the inverse to go from world to local |
| 126 | + world_to_local_transform = local_to_world_transform.inverse() |
| 127 | + |
| 128 | + for i in range(len(volume_data_batch)): |
| 129 | + volume_data = volume_data_batch[i] |
| 130 | + curr_isolevel = ( |
| 131 | + ((volume_data.max() + volume_data.min()) / 2).item() |
| 132 | + if isolevel is None |
| 133 | + else isolevel |
| 134 | + ) |
| 135 | + edge_vertices_to_index = {} |
| 136 | + vertex_coords_to_index = {} |
| 137 | + verts, faces = [], [] |
| 138 | + # Use length - spacing for the bounds since we are using |
| 139 | + # cubes of size spacing, with the lowest x,y,z values |
| 140 | + # (bottom front left) |
| 141 | + for x in range(0, W - spacing, spacing): |
| 142 | + for y in range(0, H - spacing, spacing): |
| 143 | + for z in range(0, D - spacing, spacing): |
| 144 | + cube = Cube((x, y, z), spacing) |
| 145 | + new_verts, new_faces = polygonise( |
| 146 | + cube, |
| 147 | + curr_isolevel, |
| 148 | + volume_data, |
| 149 | + edge_vertices_to_index, |
| 150 | + vertex_coords_to_index, |
| 151 | + ) |
| 152 | + verts.extend(new_verts) |
| 153 | + faces.extend(new_faces) |
| 154 | + if len(faces) > 0 and len(verts) > 0: |
| 155 | + verts = torch.tensor(verts, dtype=torch.float32) |
| 156 | + # Convert vertices from world to local coords |
| 157 | + if return_local_coords: |
| 158 | + verts = world_to_local_transform.transform_points(verts[None, ...]) |
| 159 | + verts = verts.squeeze() |
| 160 | + batched_verts.append(verts) |
| 161 | + batched_faces.append(torch.tensor(faces, dtype=torch.int64)) |
| 162 | + return batched_verts, batched_faces |
| 163 | + |
| 164 | + |
| 165 | +def polygonise( |
| 166 | + cube: Cube, |
| 167 | + isolevel: float, |
| 168 | + volume_data: torch.Tensor, |
| 169 | + edge_vertices_to_index: Dict[Tuple[Tuple, Tuple], int], |
| 170 | + vertex_coords_to_index: Dict[Tuple[float, float, float], int], |
| 171 | +) -> Tuple[list, list]: |
| 172 | + """ |
| 173 | + Runs the classic marching cubes algorithm for one Cube in the volume. |
| 174 | + Returns the vertices and faces for the given cube. |
| 175 | +
|
| 176 | + Args: |
| 177 | + cube: a Cube indicating the cube being examined for edges that intersect |
| 178 | + the volume data. |
| 179 | + isolevel: the isosurface value to use as the threshold to determine |
| 180 | + whether points are within a volume. |
| 181 | + volume_data: a Tensor of shape (D, H, W) corresponding to |
| 182 | + a 3D scalar field |
| 183 | + edge_vertices_to_index: A dictionary which maps an edge's two coordinates |
| 184 | + to the index of its interpolated point, if that interpolated point |
| 185 | + has already been used by a previous point |
| 186 | + vertex_coords_to_index: A dictionary mapping a point (x, y, z) to the corresponding |
| 187 | + index of that vertex, if that point has already been marked as a vertex. |
| 188 | + Returns: |
| 189 | + verts: List of triangle vertices for the given cube in the volume |
| 190 | + faces: List of triangle faces for the given cube in the volume |
| 191 | + """ |
| 192 | + num_existing_verts = max(edge_vertices_to_index.values(), default=-1) + 1 |
| 193 | + verts, faces = [], [] |
| 194 | + cube_index = cube.get_index(volume_data, isolevel) |
| 195 | + edges = EDGE_TABLE[cube_index] |
| 196 | + edge_indices = _get_edge_indices(edges) |
| 197 | + if len(edge_indices) == 0: |
| 198 | + return [], [] |
| 199 | + |
| 200 | + new_verts, edge_index_to_point_index = _calculate_interp_vertices( |
| 201 | + edge_indices, |
| 202 | + volume_data, |
| 203 | + cube, |
| 204 | + isolevel, |
| 205 | + edge_vertices_to_index, |
| 206 | + vertex_coords_to_index, |
| 207 | + num_existing_verts, |
| 208 | + ) |
| 209 | + |
| 210 | + # Create faces |
| 211 | + face_triangles = FACE_TABLE[cube_index] |
| 212 | + for i in range(0, len(face_triangles), 3): |
| 213 | + tri1 = edge_index_to_point_index[face_triangles[i]] |
| 214 | + tri2 = edge_index_to_point_index[face_triangles[i + 1]] |
| 215 | + tri3 = edge_index_to_point_index[face_triangles[i + 2]] |
| 216 | + if tri1 != tri2 and tri2 != tri3 and tri1 != tri3: |
| 217 | + faces.append([tri1, tri2, tri3]) |
| 218 | + |
| 219 | + verts += new_verts |
| 220 | + return verts, faces |
| 221 | + |
| 222 | + |
| 223 | +def _get_edge_indices(edges: int) -> List[int]: |
| 224 | + """ |
| 225 | + Finds which edge numbers are intersected given the bit representation |
| 226 | + detailed in marching_cubes_data.EDGE_TABLE. |
| 227 | +
|
| 228 | + Args: |
| 229 | + edges: an integer corresponding to the value at cube_index |
| 230 | + from the EDGE_TABLE in marching_cubes_data.py |
| 231 | +
|
| 232 | + Returns: |
| 233 | + edge_indices: A list of edge indices |
| 234 | + """ |
| 235 | + if edges == 0: |
| 236 | + return [] |
| 237 | + |
| 238 | + edge_indices = [] |
| 239 | + for i in range(12): |
| 240 | + if edges & (2 ** i): |
| 241 | + edge_indices.append(i) |
| 242 | + return edge_indices |
| 243 | + |
| 244 | + |
| 245 | +def _calculate_interp_vertices( |
| 246 | + edge_indices: List[int], |
| 247 | + volume_data: torch.Tensor, |
| 248 | + cube: Cube, |
| 249 | + isolevel: float, |
| 250 | + edge_vertices_to_index: Dict[Tuple[Tuple, Tuple], int], |
| 251 | + vertex_coords_to_index: Dict[Tuple[float, float, float], int], |
| 252 | + num_existing_verts: int, |
| 253 | +) -> Tuple[List, Dict[int, int]]: |
| 254 | + """ |
| 255 | + Finds the interpolated vertices for the intersected edges, either referencing |
| 256 | + previous calculations or newly calculating and storing the new interpolated |
| 257 | + points. |
| 258 | +
|
| 259 | + Args: |
| 260 | + edge_indices: the numbers of the edges which are intersected. See the |
| 261 | + Cube class for more detail on the edge numbering convention. |
| 262 | + volume_data: a Tensor of size (D, H, W) corresponding to |
| 263 | + a 3D scalar field |
| 264 | + cube: a Cube indicating the cube being examined for edges that intersect |
| 265 | + the volume |
| 266 | + isolevel: the isosurface value to use as the threshold to determine |
| 267 | + whether points are within a volume. |
| 268 | + edge_vertices_to_index: A dictionary which maps an edge's two coordinates |
| 269 | + to the index of its interpolated point, if that interpolated point |
| 270 | + has already been used by a previous point |
| 271 | + vertex_coords_to_index: A dictionary mapping a point (x, y, z) to the corresponding |
| 272 | + index of that vertex, if that point has already been marked as a vertex. |
| 273 | + num_existing_verts: the number of vertices that have been found in previous |
| 274 | + calls to polygonise for the given volume_data in the above function, marching_cubes. |
| 275 | + This is equal to the 1 + the maximum value in edge_vertices_to_index. |
| 276 | + Returns: |
| 277 | + interp_points: a list of new interpolated points |
| 278 | + edge_index_to_point_index: a dictionary mapping an edge number to the index in the |
| 279 | + marching cubes' vertices list of the interpolated point on that edge. To be precise, |
| 280 | + it refers to the index within the vertices list after interp_points |
| 281 | + has been appended to the verts list constructed in the marching_cubes_naive |
| 282 | + function. |
| 283 | + """ |
| 284 | + interp_points = [] |
| 285 | + edge_index_to_point_index = {} |
| 286 | + for edge_index in edge_indices: |
| 287 | + v1, v2 = EDGE_TO_VERTICES[edge_index] |
| 288 | + point1, point2 = cube.vertices[v1], cube.vertices[v2] |
| 289 | + p_tuple1, p_tuple2 = tuple(point1.tolist()), tuple(point2.tolist()) |
| 290 | + if (p_tuple1, p_tuple2) in edge_vertices_to_index: |
| 291 | + edge_index_to_point_index[edge_index] = edge_vertices_to_index[ |
| 292 | + (p_tuple1, p_tuple2) |
| 293 | + ] |
| 294 | + else: |
| 295 | + val1, val2 = _get_value(point1, volume_data), _get_value( |
| 296 | + point2, volume_data |
| 297 | + ) |
| 298 | + |
| 299 | + point = None |
| 300 | + if abs(isolevel - val1) < EPS: |
| 301 | + point = point1 |
| 302 | + |
| 303 | + if abs(isolevel - val2) < EPS: |
| 304 | + point = point2 |
| 305 | + |
| 306 | + if abs(val1 - val2) < EPS: |
| 307 | + point = point1 |
| 308 | + |
| 309 | + if point is None: |
| 310 | + mu = (isolevel - val1) / (val2 - val1) |
| 311 | + x1, y1, z1 = point1 |
| 312 | + x2, y2, z2 = point2 |
| 313 | + x = x1 + mu * (x2 - x1) |
| 314 | + y = y1 + mu * (y2 - y1) |
| 315 | + z = z1 + mu * (z2 - z1) |
| 316 | + else: |
| 317 | + x, y, z = point |
| 318 | + |
| 319 | + x, y, z = x.item(), y.item(), z.item() # for dictionary keys |
| 320 | + |
| 321 | + vert_index = None |
| 322 | + if (x, y, z) in vertex_coords_to_index: |
| 323 | + vert_index = vertex_coords_to_index[(x, y, z)] |
| 324 | + else: |
| 325 | + vert_index = num_existing_verts + len(interp_points) |
| 326 | + interp_points.append([x, y, z]) |
| 327 | + vertex_coords_to_index[(x, y, z)] = vert_index |
| 328 | + |
| 329 | + edge_vertices_to_index[(p_tuple1, p_tuple2)] = vert_index |
| 330 | + edge_index_to_point_index[edge_index] = vert_index |
| 331 | + |
| 332 | + return interp_points, edge_index_to_point_index |
| 333 | + |
| 334 | + |
| 335 | +def _get_value(point: Tuple[int, int, int], volume_data: torch.Tensor) -> float: |
| 336 | + """ |
| 337 | + Gets the value at a given coordinate point in the scalar field. |
| 338 | +
|
| 339 | + Args: |
| 340 | + point: data of shape (3) corresponding to an xyz coordinate. |
| 341 | + volume_data: a Tensor of size (D, H, W) corresponding to |
| 342 | + a 3D scalar field |
| 343 | + Returns: |
| 344 | + data: scalar value in the volume at the given point |
| 345 | + """ |
| 346 | + x, y, z = point |
| 347 | + return volume_data[z][y][x] |
0 commit comments