@@ -4480,6 +4480,9 @@ def __init__(self, dir_model: Path, *args, **kwargs):
4480
4480
with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4481
4481
hparams = json .load (f )
4482
4482
super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4483
+ self .d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4484
+ self .d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * self .d_model
4485
+ self .n_group = self .hparams .get ("n_groups" , 1 )
4483
4486
4484
4487
def set_vocab (self ):
4485
4488
vocab_size = self .hparams ["vocab_size" ]
@@ -4550,10 +4553,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4550
4553
# (D is also unsqueezed, but for more straightforward broadcast internally)
4551
4554
data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4552
4555
elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4553
- d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4554
- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4555
- n_group = self .hparams .get ("n_groups" , 1 )
4556
- data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4556
+ data_torch = data_torch .reshape ((self .n_group , self .d_inner // self .n_group ))
4557
4557
4558
4558
if name .endswith (".A_log" ):
4559
4559
logger .debug ("A_log --> A ==> " + new_name )
@@ -4562,6 +4562,107 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
4562
4562
yield (new_name , data_torch )
4563
4563
4564
4564
4565
+ @ModelBase .register ("BambaForCausalLM" )
4566
+ class BambaModel (Mamba2Model ):
4567
+ """Bamba is a hybrid SSM + Attention model that uses Mamba2 SSM layers"""
4568
+ model_arch = gguf .MODEL_ARCH .BAMBA
4569
+ undo_permute = True
4570
+
4571
+ def __init__ (self , * args , ** kwargs ):
4572
+
4573
+ # Hybrid mamba models use a prefix for the mamba-specific params.
4574
+ # TODO: Extend this if the prefix(es) need to be configurable
4575
+ self .hparam_prefixes = ["mamba" ]
4576
+
4577
+ super ().__init__ (* args , ** kwargs )
4578
+
4579
+ # Use Llama conversion for attention
4580
+ self ._transformer_model_class : type [TextModel ] = LlamaModel
4581
+
4582
+ # Lists of which layers use ssm vs attention
4583
+ self ._attn_layers = self .hparams .get ("attn_layer_indices" , [])
4584
+ if not self ._attn_layers :
4585
+ attn_period = self .hparams .get ("attn_layer_period" )
4586
+ assert attn_period , "Didn't find attn_layer_indices or attn_layer_period"
4587
+ attn_offset = self .hparams .get ("attn_layer_offset" )
4588
+ assert attn_offset is not None , "No attention layer offset set with attn_layer_period"
4589
+ self ._attn_layers = [
4590
+ i for i in range (self .block_count )
4591
+ if i % attn_period == attn_offset
4592
+ ]
4593
+ self ._ssm_layers = [
4594
+ i for i in range (self .block_count )
4595
+ if i not in self ._attn_layers
4596
+ ]
4597
+
4598
+ # n_group and d_inner are used during reshape_tensors for mamaba2
4599
+ self .d_model = self .find_hparam (["hidden_size" , "d_model" ])
4600
+ self .n_group = self .find_hparam (["n_groups" ])
4601
+ self .d_inner = self .find_hparam (["expand" ]) * self .d_model
4602
+
4603
+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
4604
+ prefixed = []
4605
+ for pfx in self .hparam_prefixes :
4606
+ prefixed .extend (
4607
+ "_" .join ([pfx , k ])
4608
+ for k in keys
4609
+ )
4610
+ keys = list (keys ) + prefixed
4611
+ return super ().find_hparam (keys , * args , ** kwargs )
4612
+
4613
+ def set_gguf_parameters (self ):
4614
+
4615
+ ## General Params ##
4616
+ self .gguf_writer .add_embedding_length (self .d_model )
4617
+ self .gguf_writer .add_block_count (self .block_count )
4618
+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
4619
+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
4620
+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
4621
+
4622
+ ## Mamba mixer params ##
4623
+ self .gguf_writer .add_ssm_conv_kernel (self .find_hparam (["conv_kernel" , "d_conv" ]))
4624
+ self .gguf_writer .add_ssm_state_size (self .find_hparam (["state_size" , "d_state" ]))
4625
+ self .gguf_writer .add_ssm_group_count (self .n_group )
4626
+ self .gguf_writer .add_ssm_inner_size (self .d_inner )
4627
+ # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
4628
+ # in llama.cpp
4629
+ self .gguf_writer .add_ssm_time_step_rank (self .find_hparam (["n_heads" ]))
4630
+
4631
+ ## Attention params ##
4632
+ self .gguf_writer .add_attn_layer_indices (self ._attn_layers )
4633
+ self .gguf_writer .add_rope_dimension_count (self .hparams ["attn_rotary_emb" ])
4634
+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ])
4635
+ self .gguf_writer .add_head_count_kv (self .find_hparam (["num_key_value_heads" , "n_head_kv" ]))
4636
+
4637
+ ## Feed Forward Params ##
4638
+ self .gguf_writer .add_layer_norm_rms_eps (
4639
+ self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4640
+ )
4641
+
4642
+ ## Validation ##
4643
+ d_head = self .find_hparam (["d_head" ], optional = True ) or 64
4644
+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
4645
+ assert self .d_inner % d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { d_head } "
4646
+
4647
+ def modify_tensors (
4648
+ self , data_torch : Tensor , name : str , bid : int | None
4649
+ ) -> Iterable [tuple [str , Tensor ]]:
4650
+
4651
+ # Determine whether this is a mamaba layer or an attention layer
4652
+ if bid in self ._ssm_layers :
4653
+ for mamba_new_name , data_torch in super ().modify_tensors (
4654
+ data_torch , name , bid
4655
+ ):
4656
+ yield mamba_new_name , data_torch
4657
+ elif bid in self ._attn_layers :
4658
+ for llama_new_name , data_torch in self ._transformer_model_class .modify_tensors (
4659
+ self , data_torch , name , bid
4660
+ ):
4661
+ yield llama_new_name , data_torch
4662
+ else :
4663
+ yield self .map_tensor_name (name ), data_torch
4664
+
4665
+
4565
4666
@ModelBase .register ("CohereForCausalLM" )
4566
4667
class CommandR2Model (TextModel ):
4567
4668
model_arch = gguf .MODEL_ARCH .COMMAND_R
0 commit comments