@@ -1624,52 +1624,12 @@ class Qwen2MoeModel(Model):
1624
1624
model_arch = gguf .MODEL_ARCH .QWEN2MOE
1625
1625
1626
1626
def set_gguf_parameters (self ):
1627
- self .gguf_writer .add_name (self .dir_model .name )
1628
- self .gguf_writer .add_block_count (self .block_count )
1629
-
1630
- if (n_ctx := self .find_hparam (["max_position_embeddings" , "n_ctx" ], optional = True )) is not None :
1631
- self .gguf_writer .add_context_length (n_ctx )
1632
- logger .info (f"gguf: context length = { n_ctx } " )
1633
-
1634
- n_embd = self .find_hparam (["hidden_size" , "n_embd" ])
1635
- self .gguf_writer .add_embedding_length (n_embd )
1636
- logger .info (f"gguf: embedding length = { n_embd } " )
1637
-
1638
- n_head = self .find_hparam (["num_attention_heads" , "n_head" ])
1639
- self .gguf_writer .add_head_count (n_head )
1640
- logger .info (f"gguf: head count = { n_head } " )
1641
-
1642
- if (n_head_kv := self .hparams .get ("num_key_value_heads" )) is not None :
1643
- self .gguf_writer .add_head_count_kv (n_head_kv )
1644
- logger .info (f"gguf: key-value head count = { n_head_kv } " )
1645
-
1646
- if (rope_theta := self .hparams .get ("rope_theta" )) is not None :
1647
- self .gguf_writer .add_rope_freq_base (rope_theta )
1648
- logger .info (f"gguf: rope theta = { rope_theta } " )
1649
- if (f_rms_eps := self .hparams .get ("rms_norm_eps" )) is not None :
1650
- self .gguf_writer .add_layer_norm_rms_eps (f_rms_eps )
1651
- logger .info (f"gguf: rms norm epsilon = { f_rms_eps } " )
1652
- if (f_norm_eps := self .find_hparam (["layer_norm_eps" , "layer_norm_epsilon" , "norm_epsilon" ], optional = True )) is not None :
1653
- self .gguf_writer .add_layer_norm_eps (f_norm_eps )
1654
- logger .info (f"gguf: layer norm epsilon = { f_norm_eps } " )
1655
-
1656
- if (n_experts_used := self .hparams .get ("num_experts_per_tok" )) is not None :
1657
- self .gguf_writer .add_expert_used_count (n_experts_used )
1658
- logger .info (f"gguf: experts used count = { n_experts_used } " )
1659
-
1660
- if (n_experts := self .find_hparam (["num_experts" , "num_local_experts" ])) is not None :
1627
+ super ().set_gguf_parameters ()
1628
+ if (n_experts := self .hparams .get ("num_experts" )) is not None :
1661
1629
self .gguf_writer .add_expert_count (n_experts )
1662
-
1663
1630
if (moe_intermediate_size := self .hparams .get ("moe_intermediate_size" )) is not None :
1664
1631
self .gguf_writer .add_expert_feed_forward_length (moe_intermediate_size )
1665
1632
logger .info (f"gguf: expert feed forward length = { moe_intermediate_size } " )
1666
-
1667
- if (shared_expert_intermediate_size := self .find_hparam (["shared_expert_intermediate_size" ,"intermediate_size" , "n_inner" ])) is not None :
1668
- self .gguf_writer .add_feed_forward_length (shared_expert_intermediate_size )
1669
- logger .info (f"gguf: feed forward length = { shared_expert_intermediate_size } " )
1670
-
1671
- self .gguf_writer .add_file_type (self .ftype )
1672
- logger .info (f"gguf: file type = { self .ftype } " )
1673
1633
1674
1634
1675
1635
_experts : list [dict [str , Tensor ]] | None = None
0 commit comments