@@ -165,10 +165,10 @@ def set_gguf_parameters(self):
165
165
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
166
166
return [(self .map_tensor_name (name ), data_torch )]
167
167
168
- def extra_f32_tensors (self , n_dims : int , name : str , new_name : str , bid : int | None ) -> bool :
168
+ def extra_f32_tensors (self , name : str , new_name : str , bid : int | None ) -> bool :
169
169
return False
170
170
171
- def extra_f16_tensors (self , n_dims : int , name : str , new_name : str , bid : int | None ) -> bool :
171
+ def extra_f16_tensors (self , name : str , new_name : str , bid : int | None ) -> bool :
172
172
return False
173
173
174
174
def write_tensors (self ):
@@ -199,8 +199,8 @@ def write_tensors(self):
199
199
data = data .astype (np .float32 )
200
200
201
201
# when both are true, the tensor keeps its original type
202
- extra_f32 = self .extra_f32_tensors (n_dims , name , new_name , bid )
203
- extra_f16 = self .extra_f16_tensors (n_dims , name , new_name , bid )
202
+ extra_f32 = self .extra_f32_tensors (name , new_name , bid )
203
+ extra_f16 = self .extra_f16_tensors (name , new_name , bid )
204
204
205
205
# 1d tensors need to be converted to float32
206
206
if self .ftype == 1 and data_dtype == np .float16 and (n_dims == 1 or extra_f32 ) and not extra_f16 :
@@ -1038,8 +1038,8 @@ def set_vocab(self):
1038
1038
# self.gguf_writer.add_bos_token_id(71013)
1039
1039
# self.gguf_writer.add_eos_token_id(71013)
1040
1040
1041
- def extra_f32_tensors (self , n_dims : int , name : str , new_name : str ) -> bool :
1042
- del n_dims , name , new_name # unused
1041
+ def extra_f32_tensors (self , name : str , new_name : str , bid : int | None ) -> bool :
1042
+ del name , new_name , bid # unused
1043
1043
1044
1044
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
1045
1045
return True
@@ -2152,8 +2152,8 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
2152
2152
2153
2153
return [(self .map_tensor_name (name ), data_torch )]
2154
2154
2155
- def extra_f32_tensors (self , n_dims : int , name : str , new_name : str , bid : int | None ) -> bool :
2156
- del n_dims , new_name , bid # unused
2155
+ def extra_f32_tensors (self , name : str , new_name : str , bid : int | None ) -> bool :
2156
+ del new_name , bid # unused
2157
2157
2158
2158
# not used with get_rows, must be F32
2159
2159
return name == "embeddings.token_type_embeddings.weight"
@@ -2345,9 +2345,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
2345
2345
2346
2346
return [(new_name , data_torch )]
2347
2347
2348
- def extra_f32_tensors (self , n_dims : int , name : str , new_name : str , bid : int | None ) -> bool :
2349
- del n_dims # unused
2350
-
2348
+ def extra_f32_tensors (self , name : str , new_name : str , bid : int | None ) -> bool :
2351
2349
return new_name in (self .format_tensor_name (n , bid , ".weight" if name .endswith (".weight" ) else "" ) for n in [
2352
2350
gguf .MODEL_TENSOR .SSM_CONV1D ,
2353
2351
gguf .MODEL_TENSOR .SSM_X ,
0 commit comments