|
| 1 | +# 7b pth llama --> gguf conversion, GQA/70b not supported |
| 2 | +# Only models with a single datafile are supported, like 7B |
| 3 | +# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model |
| 4 | + |
| 5 | +import gguf |
| 6 | +import gguf_namemap as tmap |
| 7 | +import os |
| 8 | +import sys |
| 9 | +import struct |
| 10 | +import json |
| 11 | +import numpy as np |
| 12 | +import torch |
| 13 | +from typing import Any, List |
| 14 | +from pathlib import Path |
| 15 | +from sentencepiece import SentencePieceProcessor |
| 16 | + |
| 17 | + |
| 18 | +#NDArray = np.ndarray[Any, Any] |
| 19 | +# compatible with python < 3.9 |
| 20 | +NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' |
| 21 | + |
| 22 | +def count_model_parts(dir_model: str) -> int: |
| 23 | + num_parts = 0 |
| 24 | + for filename in os.listdir(dir_model): |
| 25 | + if filename.startswith("consolidated."): |
| 26 | + num_parts += 1 |
| 27 | + |
| 28 | + if num_parts > 0: |
| 29 | + print("gguf: found " + str(num_parts) + " model parts") |
| 30 | + return num_parts |
| 31 | + |
| 32 | +if len(sys.argv) < 3: |
| 33 | + print("Usage: convert-h5-to-ggml.py dir-model ftype\n") |
| 34 | + print(" ftype == 0 -> float32") |
| 35 | + print(" ftype == 1 -> float16") |
| 36 | + sys.exit(1) |
| 37 | + |
| 38 | + |
| 39 | +# output in the same directory as the model |
| 40 | +dir_model = sys.argv[1] |
| 41 | +last_dir = os.path.basename(os.path.normpath(dir_model)) |
| 42 | + |
| 43 | + |
| 44 | +# possible tensor data types |
| 45 | +# ftype == 0 -> float32 |
| 46 | +# ftype == 1 -> float16 |
| 47 | +# |
| 48 | +# map from ftype to string |
| 49 | +ftype_str = ["f32", "f16"] |
| 50 | + |
| 51 | +ftype = 1 |
| 52 | +if len(sys.argv) > 2: |
| 53 | + ftype = int(sys.argv[2]) |
| 54 | + if ftype < 0 or ftype > 1: |
| 55 | + print("Invalid ftype: " + str(ftype)) |
| 56 | + sys.exit(1) |
| 57 | + |
| 58 | +fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" |
| 59 | + |
| 60 | +print("gguf: loading model "+last_dir) |
| 61 | + |
| 62 | +with open(dir_model + "/config.json", "r", encoding="utf-8") as f: |
| 63 | + hparams = json.load(f) |
| 64 | + |
| 65 | +if hparams["architectures"][0] != "LlamaForCausalLM": |
| 66 | + print("Model architecture not supported: " + hparams["architectures"][0]) |
| 67 | + sys.exit() |
| 68 | + |
| 69 | +# get number of model parts |
| 70 | +num_parts = count_model_parts(dir_model) |
| 71 | + |
| 72 | +if num_parts > 1: |
| 73 | + print("gguf: Only models with a single datafile are supported.") |
| 74 | + sys.exit() |
| 75 | + |
| 76 | +gguf_writer = gguf.GGUFWriter.open(fname_out) |
| 77 | + |
| 78 | + |
| 79 | +print("gguf: get model metadata") |
| 80 | + |
| 81 | +llm_arch = "llama" |
| 82 | +block_count = hparams["num_hidden_layers"] |
| 83 | +head_count = hparams["num_attention_heads"] |
| 84 | + |
| 85 | +if "num_key_value_heads" in hparams: |
| 86 | + head_count_kv = hparams["num_key_value_heads"] |
| 87 | +else: |
| 88 | + head_count_kv = head_count |
| 89 | + |
| 90 | +if "_name_or_path" in hparams: |
| 91 | + hf_repo = hparams["_name_or_path"] |
| 92 | +else: |
| 93 | + hf_repo="" |
| 94 | + |
| 95 | +gguf_writer.add_architecture(llm_arch) |
| 96 | +gguf_writer.add_name(last_dir) |
| 97 | +gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32") |
| 98 | +gguf_writer.add_source_hf_repo(hf_repo) |
| 99 | +gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) |
| 100 | +gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) |
| 101 | +gguf_writer.add_block_count(llm_arch, block_count) |
| 102 | +gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) |
| 103 | +gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) |
| 104 | +gguf_writer.add_head_count(llm_arch, head_count) |
| 105 | +gguf_writer.add_head_count_kv(llm_arch, head_count_kv) |
| 106 | +gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) |
| 107 | + |
| 108 | + |
| 109 | +# TOKENIZATION |
| 110 | + |
| 111 | +print("gguf: get tokenizer metadata") |
| 112 | + |
| 113 | +tokens: List[str] = [] |
| 114 | +scores: List[float] = [] |
| 115 | + |
| 116 | +if Path(dir_model + "/tokenizer.model").is_file(): |
| 117 | + # vocab type sentencepiece |
| 118 | + print("gguf: get sentencepiece tokenizer vocab and scores") |
| 119 | + |
| 120 | + tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") |
| 121 | + |
| 122 | + for i in range(tokenizer.vocab_size()): |
| 123 | + text: bytes |
| 124 | + if tokenizer.is_unknown(i): |
| 125 | + text = " \u2047 ".encode("utf-8") |
| 126 | + elif tokenizer.is_control(i): |
| 127 | + text = b"" |
| 128 | + if tokenizer.is_byte(i): |
| 129 | + piece = tokenizer.id_to_piece(i) |
| 130 | + if len(piece) != 6: |
| 131 | + raise Exception(f"Invalid token: {piece}") |
| 132 | + byte_value = int(piece[3:-1], 16) |
| 133 | + text = struct.pack("B", byte_value) |
| 134 | + else: |
| 135 | + text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") |
| 136 | + score: float = tokenizer.get_score(i) |
| 137 | + |
| 138 | + tokens.append(text) |
| 139 | + scores.append(score) |
| 140 | + |
| 141 | + gguf_writer.add_tokenizer_model("llama") |
| 142 | + gguf_writer.add_token_list(tokens) |
| 143 | + gguf_writer.add_token_scores(scores) |
| 144 | + |
| 145 | +if Path(dir_model + "/tokenizer.json").is_file(): |
| 146 | + with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: |
| 147 | + tokenizer = json.load(f) |
| 148 | + |
| 149 | + if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): |
| 150 | + print("gguf: get special token ids") |
| 151 | + |
| 152 | + with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: |
| 153 | + tokenizer_config = json.load(f) |
| 154 | + |
| 155 | + # find special token ids |
| 156 | + |
| 157 | + if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: |
| 158 | + for key in tokenizer["added_tokens"]: |
| 159 | + if key["content"] == tokenizer_config["bos_token"]["content"]: |
| 160 | + gguf_writer.add_bos_token_id(key["id"]) |
| 161 | + |
| 162 | + if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: |
| 163 | + for key in tokenizer["added_tokens"]: |
| 164 | + if key["content"] == tokenizer_config["eos_token"]["content"]: |
| 165 | + gguf_writer.add_eos_token_id(key["id"]) |
| 166 | + |
| 167 | + if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: |
| 168 | + for key in tokenizer["added_tokens"]: |
| 169 | + if key["content"] == tokenizer_config["unk_token"]["content"]: |
| 170 | + gguf_writer.add_unk_token_id(key["id"]) |
| 171 | + |
| 172 | + if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: |
| 173 | + for key in tokenizer["added_tokens"]: |
| 174 | + if key["content"] == tokenizer_config["sep_token"]["content"]: |
| 175 | + gguf_writer.add_sep_token_id(key["id"]) |
| 176 | + |
| 177 | + if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: |
| 178 | + for key in tokenizer["added_tokens"]: |
| 179 | + if key["content"] == tokenizer_config["pad_token"]["content"]: |
| 180 | + gguf_writer.add_pad_token_id(key["id"]) |
| 181 | + |
| 182 | + |
| 183 | +# TENSORS |
| 184 | + |
| 185 | +tensor_map = tmap.get_tensor_namemap(block_count) |
| 186 | + |
| 187 | +# tensor info |
| 188 | +print("gguf: get tensor metadata") |
| 189 | + |
| 190 | +part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) |
| 191 | + |
| 192 | +for part_name in part_names: |
| 193 | + print("gguf: loading model part '"+ part_name + "'") |
| 194 | + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |
| 195 | + |
| 196 | + for name in model_part.keys(): |
| 197 | + data = model_part[name] |
| 198 | + |
| 199 | + # we don't need these |
| 200 | + if name == "rope.freqs": |
| 201 | + continue |
| 202 | + |
| 203 | + # convert any unsupported data types to float32 |
| 204 | + if data.dtype != torch.float16 and data.dtype != torch.float32: |
| 205 | + data = data.to(torch.float32) |
| 206 | + |
| 207 | + data = data.squeeze().numpy() |
| 208 | + |
| 209 | + # map tensor names |
| 210 | + if name.endswith(".weight") and name[:-7] in tensor_map: |
| 211 | + name = tensor_map[name[:-7]] + ".weight" |
| 212 | + elif name.endswith(".bias") and name[:-5] in tensor_map: |
| 213 | + name = tensor_map[name[:-5]] + ".bias" |
| 214 | + else: |
| 215 | + print( "Can not map tensor '" + name + "'" ) |
| 216 | + sys.exit() |
| 217 | + |
| 218 | + n_dims = len(data.shape) |
| 219 | + data_dtype = data.dtype |
| 220 | + |
| 221 | + # if f32 desired, convert any float16 to float32 |
| 222 | + if ftype == 0 and data.dtype == np.float16: |
| 223 | + data_dtype = np.float32 |
| 224 | + |
| 225 | + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 |
| 226 | + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
| 227 | + data_dtype = np.float32 |
| 228 | + |
| 229 | + # if f16 desired, convert any float32 2-dim weight tensors to float16 |
| 230 | + if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
| 231 | + data_dtype = np.float16 |
| 232 | + |
| 233 | + data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 |
| 234 | + |
| 235 | + gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) |
| 236 | + |
| 237 | + |
| 238 | +print("gguf: write header") |
| 239 | +gguf_writer.write_header_to_file() |
| 240 | +print("gguf: write metadata") |
| 241 | +gguf_writer.write_kv_data_to_file() |
| 242 | +print("gguf: write tensor metadata") |
| 243 | +gguf_writer.write_ti_data_to_file() |
| 244 | + |
| 245 | +# tensor data |
| 246 | +print("gguf: convert and write tensor data") |
| 247 | + |
| 248 | +part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) |
| 249 | + |
| 250 | +for part_name in part_names: |
| 251 | + print("gguf: loading model part '"+ part_name + "'") |
| 252 | + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |
| 253 | + |
| 254 | + for name in model_part.keys(): |
| 255 | + data = model_part[name] |
| 256 | + |
| 257 | + |
| 258 | + old_dtype = data.dtype |
| 259 | + |
| 260 | + # we don't need these |
| 261 | + if name == "rope.freqs": |
| 262 | + continue |
| 263 | + |
| 264 | + # convert any unsupported data types to float32 |
| 265 | + if data.dtype != torch.float16 and data.dtype != torch.float32: |
| 266 | + data = data.to(torch.float32) |
| 267 | + |
| 268 | + data = data.squeeze().numpy() |
| 269 | + |
| 270 | + # map tensor names |
| 271 | + if name.endswith(".weight") and name[:-7] in tensor_map: |
| 272 | + name = tensor_map[name[:-7]] + ".weight" |
| 273 | + elif name.endswith(".bias") and name[:-5] in tensor_map: |
| 274 | + name = tensor_map[name[:-5]] + ".bias" |
| 275 | + else: |
| 276 | + print( "Can not map tensor '" + name + "'" ) |
| 277 | + sys.exit() |
| 278 | + |
| 279 | + n_dims = len(data.shape) |
| 280 | + data_dtype = data.dtype |
| 281 | + |
| 282 | + # if f32 desired, convert any float16 to float32 |
| 283 | + if ftype == 0 and data.dtype == np.float16: |
| 284 | + data = data.astype(np.float32) |
| 285 | + |
| 286 | + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 |
| 287 | + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
| 288 | + data = data.astype(np.float32) |
| 289 | + |
| 290 | + # if f16 desired, convert any float32 2-dim weight tensors to float16 |
| 291 | + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
| 292 | + data = data.astype(np.float16) |
| 293 | + |
| 294 | + print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) |
| 295 | + |
| 296 | + gguf_writer.write_tensor_to_file(data) |
| 297 | + |
| 298 | +gguf_writer.close() |
| 299 | + |
| 300 | + |
| 301 | +print("gguf: model successfully exported to '" + fname_out + "'") |
| 302 | +print("") |
0 commit comments