@@ -133,17 +133,22 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path,
133
133
logger .info (f"choosing --outtype bf16 from first tensor type ({ first_tensor .dtype } )" )
134
134
self .ftype = gguf .LlamaFileType .MOSTLY_BF16
135
135
136
+ # Update any missing authorship metadata with huggingface_parameters
137
+ if self .metadata is not None and self .metadata .source_hf_repo is None :
138
+ if self .hparams is not None and "_name_or_path" in self .hparams :
139
+ self .metadata .source_hf_repo = self .hparams ["_name_or_path" ]
140
+
136
141
# Set model name based on latest metadata either provided or calculated from environment
137
- def get_model_name (metadata , hyperparameters , dir_model , model_arch ):
142
+ def get_model_name (metadata , huggingface_parameters , dir_model , model_arch ):
138
143
if metadata is not None and metadata .name is not None :
139
144
# Explicit Metadata Was Provided By User
140
145
return metadata .name
141
- elif hyperparameters is not None and "_name_or_path" in hyperparameters :
142
- # Hugging Face Hyperparameter Model Name or Model Folder Name is Provided
143
- return hyperparameters ["_name_or_path" ]
144
- elif hyperparameters is not None and "model_type" in hyperparameters :
145
- # Hugging Face Hyperparameter Model Type is Provided
146
- return hyperparameters ["model_type" ]
146
+ elif huggingface_parameters is not None and "_name_or_path" in huggingface_parameters :
147
+ # Hugging Face Parameters Model Name or Model Folder Name is Provided
148
+ return huggingface_parameters ["_name_or_path" ]
149
+ elif huggingface_parameters is not None and "model_type" in huggingface_parameters :
150
+ # Hugging Face Parameters Model Type is Provided
151
+ return huggingface_parameters ["model_type" ]
147
152
elif dir_model is not None and dir_model .name is not None :
148
153
# Use directory folder name
149
154
return dir_model .name
@@ -154,7 +159,7 @@ def get_model_name(metadata, hyperparameters, dir_model, model_arch):
154
159
# Extracts and converts the encoding scheme from the given file type name. e.g. 'gguf.LlamaFileType.ALL_F32' --> 'F32'
155
160
encodingScheme = self .ftype .name .partition ("_" )[2 ]
156
161
157
- # Get Expert Count From Hyperparameters
162
+ # Get Expert Count From huggingface_parameters
158
163
expert_count = self .hparams ["num_local_experts" ] if "num_local_experts" in self .hparams else None
159
164
160
165
# Generate default filename based on model specification and available metadata
@@ -952,7 +957,6 @@ def set_gguf_parameters(self):
952
957
block_count = self .hparams ["num_hidden_layers" ]
953
958
head_count = self .hparams ["num_attention_heads" ]
954
959
head_count_kv = self .hparams .get ("num_key_value_heads" , head_count )
955
- hf_repo = self .hparams .get ("_name_or_path" , "" )
956
960
957
961
ctx_length = 0
958
962
if "max_sequence_length" in self .hparams :
@@ -965,7 +969,6 @@ def set_gguf_parameters(self):
965
969
raise ValueError ("gguf: can not find ctx length parameter." )
966
970
967
971
self .gguf_writer .add_file_type (self .ftype )
968
- self .gguf_writer .add_source_hf_repo (hf_repo )
969
972
self .gguf_writer .add_tensor_data_layout ("Meta AI original pth" )
970
973
self .gguf_writer .add_context_length (ctx_length )
971
974
self .gguf_writer .add_embedding_length (self .hparams ["hidden_size" ])
@@ -989,7 +992,6 @@ def set_gguf_parameters(self):
989
992
block_count = self .hparams ["num_hidden_layers" ]
990
993
head_count = self .hparams ["num_attention_heads" ]
991
994
head_count_kv = self .hparams .get ("num_key_value_heads" , head_count )
992
- hf_repo = self .hparams .get ("_name_or_path" , "" )
993
995
994
996
ctx_length = 0
995
997
if "max_sequence_length" in self .hparams :
@@ -1001,7 +1003,6 @@ def set_gguf_parameters(self):
1001
1003
else :
1002
1004
raise ValueError ("gguf: can not find ctx length parameter." )
1003
1005
1004
- self .gguf_writer .add_source_hf_repo (hf_repo )
1005
1006
self .gguf_writer .add_tensor_data_layout ("Meta AI original pth" )
1006
1007
self .gguf_writer .add_context_length (ctx_length )
1007
1008
self .gguf_writer .add_embedding_length (self .hparams ["hidden_size" ])
@@ -1111,7 +1112,6 @@ def set_gguf_parameters(self):
1111
1112
block_count = self .hparams ["num_hidden_layers" ]
1112
1113
head_count = self .hparams ["num_attention_heads" ]
1113
1114
head_count_kv = self .hparams .get ("num_key_value_heads" , head_count )
1114
- hf_repo = self .hparams .get ("_name_or_path" , "" )
1115
1115
1116
1116
ctx_length = 0
1117
1117
if "max_sequence_length" in self .hparams :
@@ -1123,7 +1123,6 @@ def set_gguf_parameters(self):
1123
1123
else :
1124
1124
raise ValueError ("gguf: can not find ctx length parameter." )
1125
1125
1126
- self .gguf_writer .add_source_hf_repo (hf_repo )
1127
1126
self .gguf_writer .add_tensor_data_layout ("Meta AI original pth" )
1128
1127
self .gguf_writer .add_context_length (ctx_length )
1129
1128
self .gguf_writer .add_embedding_length (self .hparams ["hidden_size" ])
0 commit comments