|
| 1 | +import sys, struct, math, argparse |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +import gguf |
| 6 | + |
| 7 | +# Note: Does not support GGML_QKK_64 |
| 8 | +QK_K = 256 |
| 9 | +# Items here are (block size, type size) |
| 10 | +GGML_QUANT_SIZES = { |
| 11 | + gguf.GGMLQuantizationType.F32 : (1, 4), |
| 12 | + gguf.GGMLQuantizationType.F16 : (1, 2), |
| 13 | + gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16), |
| 14 | + gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16), |
| 15 | + gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16), |
| 16 | + gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16), |
| 17 | + gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32), |
| 18 | + gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32), |
| 19 | + gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4), |
| 20 | + gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12), |
| 21 | + gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12), |
| 22 | + gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12), |
| 23 | + gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16), |
| 24 | + gguf.GGMLQuantizationType.Q8_K : (256, 2 + QK_K + QK_K // 8), |
| 25 | +} |
| 26 | + |
| 27 | +class Hyperparameters: |
| 28 | + def __init__(self): |
| 29 | + self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0 |
| 30 | + |
| 31 | + def load(self, data, offset): |
| 32 | + ( |
| 33 | + self.n_vocab, |
| 34 | + self.n_embd, |
| 35 | + self.n_mult, |
| 36 | + self.n_head, |
| 37 | + self.n_layer, |
| 38 | + self.n_rot, |
| 39 | + self.ftype, |
| 40 | + ) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) |
| 41 | + return 4 * 7 |
| 42 | + |
| 43 | + def __str__(self): |
| 44 | + return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, ftype={self.ftype}>' |
| 45 | + |
| 46 | +class Vocab: |
| 47 | + def __init__(self): |
| 48 | + self.items = [] |
| 49 | + |
| 50 | + def load(self, data, offset, n_vocab): |
| 51 | + orig_offset = offset |
| 52 | + for _ in range(n_vocab): |
| 53 | + itemlen = struct.unpack('<I', data[offset:offset + 4])[0] |
| 54 | + assert itemlen < 4096, 'Absurd vocab item length' |
| 55 | + offset += 4 |
| 56 | + vocab = bytes(data[offset:offset + itemlen]) |
| 57 | + offset += itemlen |
| 58 | + score = struct.unpack('<f', data[offset:offset + 4])[0] |
| 59 | + offset += 4 |
| 60 | + self.items.append((vocab, score)) |
| 61 | + return offset - orig_offset |
| 62 | + |
| 63 | +class Tensor: |
| 64 | + def __init__(self): |
| 65 | + self.name = None |
| 66 | + self.dims = () |
| 67 | + self.dtype = None |
| 68 | + self.start_offset = 0 |
| 69 | + self.len_bytes = 0 |
| 70 | + |
| 71 | + def load(self, data, offset): |
| 72 | + orig_offset = offset |
| 73 | + (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12]) |
| 74 | + assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}' |
| 75 | + assert name_len < 4096, 'Absurd tensor name length' |
| 76 | + quant = GGML_QUANT_SIZES.get(dtype) |
| 77 | + assert quant is not None, 'Unknown tensor type' |
| 78 | + (blksize, tysize) = quant |
| 79 | + offset += 12 |
| 80 | + self.dtype= dtype |
| 81 | + self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) |
| 82 | + offset += 4 * n_dims |
| 83 | + self.name = bytes(data[offset:offset + name_len]) |
| 84 | + offset += name_len |
| 85 | + pad = ((offset + 31) & ~31) - offset |
| 86 | + offset += pad |
| 87 | + n_elems = np.prod(self.dims) |
| 88 | + n_bytes = (n_elems * tysize) // blksize |
| 89 | + self.start_offset = offset |
| 90 | + self.len_bytes = n_bytes |
| 91 | + offset += n_bytes |
| 92 | + # print(n_dims, name_len, dtype, self.dims, self.name, pad) |
| 93 | + return offset - orig_offset |
| 94 | + |
| 95 | +class GGMLV3Model: |
| 96 | + def __init__(self): |
| 97 | + self.hyperparameters = None |
| 98 | + self.vocab = None |
| 99 | + self.tensor_map = {} |
| 100 | + self.tensors = [] |
| 101 | + |
| 102 | + def validate_header(self, data, offset): |
| 103 | + if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3: |
| 104 | + raise ValueError('Only GGJTv3 supported') |
| 105 | + return 8 |
| 106 | + |
| 107 | + def load(self, data, offset): |
| 108 | + offset += self.validate_header(data, offset) |
| 109 | + hp = Hyperparameters() |
| 110 | + offset += hp.load(data, offset) |
| 111 | + vocab = Vocab() |
| 112 | + offset += vocab.load(data, offset, hp.n_vocab) |
| 113 | + tensors = [] |
| 114 | + tensor_map = {} |
| 115 | + while offset < len(data): |
| 116 | + tensor = Tensor() |
| 117 | + offset += tensor.load(data, offset) |
| 118 | + tensor_map[tensor.name] = len(tensors) |
| 119 | + tensors.append(tensor) |
| 120 | + self.hyperparameters = hp |
| 121 | + self.vocab = vocab |
| 122 | + self.tensors = tensors |
| 123 | + self.tensor_map = tensor_map |
| 124 | + return offset |
| 125 | + |
| 126 | +def save_gguf(ggml_model, data, cfg): |
| 127 | + hp = ggml_model.hyperparameters |
| 128 | + ff_tensor_idx = ggml_model.tensor_map.get(b'layers.0.feed_forward.w1.weight') |
| 129 | + assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor' |
| 130 | + ff_tensor = ggml_model.tensors[ff_tensor_idx] |
| 131 | + if cfg.gqa == 1: |
| 132 | + n_kv_head = hp.n_head |
| 133 | + else: |
| 134 | + gqa = float(cfg.gqa) |
| 135 | + n_kv_head = None |
| 136 | + for x in range(1, 256): |
| 137 | + if float(hp.n_head) / float(x) == gqa: |
| 138 | + n_kv_head = x |
| 139 | + assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param" |
| 140 | + print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') |
| 141 | + nm = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, hp.n_layer) |
| 142 | + gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) |
| 143 | + #gguf_writer.add_name('meep') |
| 144 | + #gguf_writer.add_source_hf_repo('merp') |
| 145 | + # gguf_writer.add_tensor_data_layout("Meta AI original pth") |
| 146 | + gguf_writer.add_context_length(cfg.context_length) |
| 147 | + gguf_writer.add_embedding_length(hp.n_embd) |
| 148 | + gguf_writer.add_block_count(hp.n_layer) |
| 149 | + gguf_writer.add_feed_forward_length(ff_tensor.dims[1]) |
| 150 | + print('FF dim', ff_tensor.dims[1]) |
| 151 | + gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head) |
| 152 | + gguf_writer.add_head_count(hp.n_head) |
| 153 | + gguf_writer.add_head_count_kv(n_kv_head) |
| 154 | + gguf_writer.add_layer_norm_rms_eps(float(cfg.eps)) |
| 155 | + gguf_writer.add_tokenizer_model('llama') |
| 156 | + tokens = [] |
| 157 | + scores = [] |
| 158 | + print(f'* Adding {hp.n_vocab} vocab item(s)') |
| 159 | + toktypes = [] |
| 160 | + for (tokid, (vbytes, vscore)) in enumerate(ggml_model.vocab.items): |
| 161 | + if len(vbytes) > 1 and vbytes[0] == 32: |
| 162 | + vbytes = vbytes.replace(b' ', b'\xe2\x96\x81') |
| 163 | + tt = 1 |
| 164 | + if len(vbytes) == 0: |
| 165 | + tt = 3 |
| 166 | + elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1: |
| 167 | + hv = hex(vbytes[0])[2:].upper() |
| 168 | + vbytes = bytes(f'<0x{hv}>', encoding = 'UTF-8') |
| 169 | + tt = 6 |
| 170 | + toktypes.append(tt) |
| 171 | + tokens.append(vbytes) |
| 172 | + scores.append(vscore) |
| 173 | + gguf_writer.add_token_list(tokens) |
| 174 | + gguf_writer.add_token_scores(scores) |
| 175 | + gguf_writer.add_token_types(toktypes) |
| 176 | + print('* Adding tensors') |
| 177 | + for tensor in ggml_model.tensors: |
| 178 | + name = str(tensor.name, 'UTF-8') |
| 179 | + if name.endswith('.weight'): |
| 180 | + name = name[:-7] |
| 181 | + suffix = '.weight' |
| 182 | + elif name.endswith('.bias'): |
| 183 | + name = name[:-5] |
| 184 | + suffix = '.bias' |
| 185 | + mapped_name = nm.get(name) |
| 186 | + assert mapped_name is not None, f'Bad name {name}' |
| 187 | + mapped_name += suffix |
| 188 | + tempdims = list(tensor.dims[:]) |
| 189 | + if len(tempdims) > 1: |
| 190 | + temp = tempdims[1] |
| 191 | + tempdims[1] = tempdims[0] |
| 192 | + tempdims[0] = temp |
| 193 | + print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}') |
| 194 | + gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype) |
| 195 | + print("gguf: write header") |
| 196 | + gguf_writer.write_header_to_file() |
| 197 | + print("gguf: write metadata") |
| 198 | + gguf_writer.write_kv_data_to_file() |
| 199 | + print("gguf: write tensors") |
| 200 | + gguf_writer.write_tensors_to_file() |
| 201 | + |
| 202 | + gguf_writer.close() |
| 203 | + |
| 204 | +def handle_args(): |
| 205 | + parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF') |
| 206 | + parser.add_argument('--input', '-i', help = 'Input GGMLv3 filename') |
| 207 | + parser.add_argument('--output', '-o', help ='Output GGUF filename') |
| 208 | + parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') |
| 209 | + parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps (use 1e-5 for LLaMA2)') |
| 210 | + parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length') |
| 211 | + return parser.parse_args() |
| 212 | + |
| 213 | +def main(): |
| 214 | + cfg = handle_args() |
| 215 | + data = np.memmap(cfg.input, mode = 'r') |
| 216 | + model = GGMLV3Model() |
| 217 | + offset = model.load(data, 0) |
| 218 | + print(model.hyperparameters) |
| 219 | + # print(model.vocab.items) |
| 220 | + # return |
| 221 | + save_gguf(model, data, cfg) |
| 222 | + |
| 223 | +main() |
0 commit comments