Skip to content

Commit 97af49f

Browse files
authored
server : reuse llama_sample_token common util (#3494)
* server : reuse llama_sample_token common function * common : use n_probs for temperature sampling
1 parent 16820a5 commit 97af49f

File tree

2 files changed

+13
-90
lines changed

2 files changed

+13
-90
lines changed

common/common.cpp

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1020,10 +1020,11 @@ llama_token llama_sample_token(
10201020
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
10211021
} else {
10221022
// Temperature sampling
1023-
llama_sample_top_k (ctx, &cur_p, top_k, 1);
1024-
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
1025-
llama_sample_typical (ctx, &cur_p, typical_p, 1);
1026-
llama_sample_top_p (ctx, &cur_p, top_p, 1);
1023+
size_t min_keep = std::max(1, params.n_probs);
1024+
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
1025+
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
1026+
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
1027+
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
10271028
llama_sample_temp(ctx, &cur_p, temp);
10281029

10291030
{

examples/server/server.cpp

Lines changed: 8 additions & 86 deletions
Original file line numberDiff line numberDiff line change
@@ -534,98 +534,20 @@ struct llama_server_context
534534
return result;
535535
}
536536

537-
// out of user input, sample next token
538-
const float temp = params.temp;
539-
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
540-
const float top_p = params.top_p;
541-
const float tfs_z = params.tfs_z;
542-
const float typical_p = params.typical_p;
543-
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
544-
const float repeat_penalty = params.repeat_penalty;
545-
const float alpha_presence = params.presence_penalty;
546-
const float alpha_frequency = params.frequency_penalty;
547-
const int mirostat = params.mirostat;
548-
const float mirostat_tau = params.mirostat_tau;
549-
const float mirostat_eta = params.mirostat_eta;
550-
const bool penalize_nl = params.penalize_nl;
551-
const int32_t n_probs = params.n_probs;
552-
553537
{
554-
auto *logits = llama_get_logits(ctx);
555-
auto n_vocab = llama_n_vocab(model);
556-
557-
// Apply params.logit_bias map
558-
for (const auto &it : params.logit_bias)
559-
{
560-
logits[it.first] += it.second;
561-
}
562-
538+
// out of user input, sample next token
563539
std::vector<llama_token_data> candidates;
564-
candidates.reserve(n_vocab);
565-
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
566-
{
567-
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
568-
}
540+
candidates.reserve(llama_n_vocab(model));
569541

570-
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
571-
572-
// Apply penalties
573-
float nl_logit = logits[llama_token_nl(ctx)];
574-
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
575-
llama_sample_repetition_penalty(ctx, &candidates_p,
576-
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
577-
last_n_repeat, repeat_penalty);
578-
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
579-
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
580-
last_n_repeat, alpha_frequency, alpha_presence);
581-
if (!penalize_nl)
582-
{
583-
logits[llama_token_nl(ctx)] = nl_logit;
584-
}
542+
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
585543

586-
if (grammar != nullptr) {
587-
llama_sample_grammar(ctx, &candidates_p, grammar);
588-
}
544+
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
589545

590-
if (temp <= 0)
591-
{
592-
// Greedy sampling
593-
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
594-
if (n_probs > 0)
595-
{
596-
llama_sample_softmax(ctx, &candidates_p);
597-
}
598-
}
599-
else
546+
const int32_t n_probs = params.n_probs;
547+
if (params.temp <= 0 && n_probs > 0)
600548
{
601-
if (mirostat == 1)
602-
{
603-
static float mirostat_mu = 2.0f * mirostat_tau;
604-
const int mirostat_m = 100;
605-
llama_sample_temp(ctx, &candidates_p, temp);
606-
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
607-
}
608-
else if (mirostat == 2)
609-
{
610-
static float mirostat_mu = 2.0f * mirostat_tau;
611-
llama_sample_temp(ctx, &candidates_p, temp);
612-
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
613-
}
614-
else
615-
{
616-
// Temperature sampling
617-
size_t min_keep = std::max(1, n_probs);
618-
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
619-
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
620-
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
621-
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
622-
llama_sample_temp(ctx, &candidates_p, temp);
623-
result.tok = llama_sample_token(ctx, &candidates_p);
624-
}
625-
}
626-
627-
if (grammar != nullptr) {
628-
llama_grammar_accept_token(ctx, grammar, result.tok);
549+
// For llama_sample_token_greedy we need to sort candidates
550+
llama_sample_softmax(ctx, &candidates_p);
629551
}
630552

631553
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)

0 commit comments

Comments
 (0)