@@ -2731,7 +2731,7 @@ def set_vocab(self):
2731
2731
else :
2732
2732
# Use the GPT-NeoX tokenizer when no tokenizer files are present
2733
2733
self ._set_vocab_builtin ("gpt-neox" , vocab_size )
2734
-
2734
+
2735
2735
def set_gguf_parameters (self ):
2736
2736
d_model = self .find_hparam (["hidden_size" , "d_model" ])
2737
2737
d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
@@ -2741,7 +2741,7 @@ def set_gguf_parameters(self):
2741
2741
# ref: https://stackoverflow.com/a/17511341/22827863
2742
2742
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
2743
2743
dt_rank = self .find_hparam (["time_step_rank" , "dt_rank" ], optional = True ) or - (d_model // - 16 )
2744
- rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
2744
+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
2745
2745
use_dt_b_c_norm = False
2746
2746
# For falconmamba we do apply RMS norm on B / DT and C layers
2747
2747
if self .find_hparam (["model_type" ], optional = True ) in ("falcon_mamba" ,):
@@ -3858,7 +3858,7 @@ def prepare_tensors(self):
3858
3858
self .gguf_writer .add_tensor (self .format_tensor_name (gguf .MODEL_TENSOR .ROPE_FREQS ), np .array (rope_factors , dtype = np .float32 ))
3859
3859
3860
3860
super ().prepare_tensors ()
3861
-
3861
+
3862
3862
3863
3863
###### CONVERSION LOGIC ######
3864
3864
0 commit comments