Skip to content

Commit 9fbadae

Browse files
authored
rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (#11356)
1 parent 9755129 commit 9fbadae

File tree

2 files changed

+39
-24
lines changed

2 files changed

+39
-24
lines changed

ggml/src/ggml-cuda/ggml-cuda.cu

Lines changed: 37 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -1082,7 +1082,9 @@ static void ggml_cuda_op_mul_mat_cublas(
10821082

10831083
const int compute_capability = ggml_cuda_info().devices[id].cc;
10841084

1085-
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
1085+
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
1086+
1087+
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
10861088
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
10871089
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
10881090
if (src0->type != GGML_TYPE_F16) {
@@ -1103,28 +1105,38 @@ static void ggml_cuda_op_mul_mat_cublas(
11031105
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
11041106
}
11051107
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
1106-
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
11071108

1108-
const half alpha_f16 = 1.0f;
1109-
const half beta_f16 = 0.0f;
1109+
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
11101110

1111-
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
1112-
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1113-
cu_compute_type = CUBLAS_COMPUTE_32F;
1114-
}
1111+
if (compute_capability == GGML_CUDA_CC_CDNA) {
1112+
const float alpha = 1.0f;
1113+
const float beta = 0.0f;
1114+
CUBLAS_CHECK(
1115+
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1116+
row_diff, src1_ncols, ne10,
1117+
&alpha, src0_ptr, CUDA_R_16F, ne00,
1118+
src1_ptr, CUDA_R_16F, ne10,
1119+
&beta, dst_dd_i, CUDA_R_32F, ldc,
1120+
CUBLAS_COMPUTE_32F,
1121+
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1122+
} else {
1123+
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
11151124

1116-
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
1117-
CUBLAS_CHECK(
1118-
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1119-
row_diff, src1_ncols, ne10,
1120-
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
1121-
src1_ptr, CUDA_R_16F, ne10,
1122-
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
1123-
cu_compute_type,
1124-
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1125+
const half alpha_f16 = 1.0f;
1126+
const half beta_f16 = 0.0f;
11251127

1126-
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
1127-
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
1128+
CUBLAS_CHECK(
1129+
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1130+
row_diff, src1_ncols, ne10,
1131+
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
1132+
src1_ptr, CUDA_R_16F, ne10,
1133+
&beta_f16, dst_dd_i, CUDA_R_16F, ldc,
1134+
CUBLAS_COMPUTE_16F,
1135+
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1136+
1137+
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
1138+
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
1139+
}
11281140
} else {
11291141
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
11301142
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
@@ -1613,10 +1625,6 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
16131625
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
16141626
cudaDataType_t cu_data_type = CUDA_R_16F;
16151627

1616-
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1617-
cu_compute_type = CUBLAS_COMPUTE_32F;
1618-
}
1619-
16201628
// dst strides
16211629
size_t nbd2 = dst->nb[2];
16221630
size_t nbd3 = dst->nb[3];
@@ -1645,6 +1653,12 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
16451653
beta = &beta_f32;
16461654
}
16471655

1656+
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1657+
cu_compute_type = CUBLAS_COMPUTE_32F;
1658+
alpha = &alpha_f32;
1659+
beta = &beta_f32;
1660+
}
1661+
16481662
GGML_ASSERT(ne12 % ne02 == 0);
16491663
GGML_ASSERT(ne13 % ne03 == 0);
16501664

ggml/src/ggml-cuda/mmvq.cu

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
142142
int64_t nwarps = 1;
143143
int64_t rows_per_cuda_block = 1;
144144

145-
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
145+
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_RDNA2) { // NVIDIA and AMD older than RDNA2
146146
switch(ncols_y) {
147147
case 1:
148148
nwarps = 4;
@@ -166,6 +166,7 @@ static void mul_mat_vec_q_cuda(
166166
break;
167167
}
168168
}
169+
169170
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
170171
const dim3 block_nums(nblocks, 1, 1);
171172
const dim3 block_dims(WARP_SIZE, nwarps, 1);

0 commit comments

Comments
 (0)