Skip to content

Commit e06cbce

Browse files
authored
gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF * Cleanups, better output during conversion * Fix vocab space conversion logic * More vocab conversion fixes * Add description to converted GGUF files * Improve help text, expand warning * Allow specifying name and description for output GGUF * Allow overriding vocab and hyperparams from original model metadata * Use correct params override var name * Fix wrong type size for Q8_K Better handling of original style metadata * Set default value for gguf add_tensor raw_shape KW arg
1 parent 6490ff7 commit e06cbce

File tree

2 files changed

+374
-12
lines changed

2 files changed

+374
-12
lines changed

convert-llama-ggmlv3-to-gguf.py

Lines changed: 334 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,334 @@
1+
import sys, struct, math, argparse
2+
from pathlib import Path
3+
4+
import numpy as np
5+
6+
import gguf
7+
8+
# Note: Does not support GGML_QKK_64
9+
QK_K = 256
10+
# Items here are (block size, type size)
11+
GGML_QUANT_SIZES = {
12+
gguf.GGMLQuantizationType.F32 : (1, 4),
13+
gguf.GGMLQuantizationType.F16 : (1, 2),
14+
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
15+
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
16+
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
17+
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
18+
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
19+
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
20+
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
21+
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
22+
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
23+
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
24+
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
25+
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
26+
}
27+
28+
class Hyperparameters:
29+
def __init__(self):
30+
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
31+
self.n_ff = 0
32+
33+
def set_n_ff(self, model):
34+
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
35+
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
36+
ff_tensor = model.tensors[ff_tensor_idx]
37+
self.n_ff = ff_tensor.dims[1]
38+
39+
def load(self, data, offset):
40+
(
41+
self.n_vocab,
42+
self.n_embd,
43+
self.n_mult,
44+
self.n_head,
45+
self.n_layer,
46+
self.n_rot,
47+
self.ftype,
48+
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
49+
return 4 * 7
50+
51+
def __str__(self):
52+
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
53+
54+
class Vocab:
55+
def __init__(self):
56+
self.items = []
57+
58+
def load(self, data, offset, n_vocab):
59+
orig_offset = offset
60+
for _ in range(n_vocab):
61+
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
62+
assert itemlen < 4096, 'Absurd vocab item length'
63+
offset += 4
64+
vocab = bytes(data[offset:offset + itemlen])
65+
offset += itemlen
66+
score = struct.unpack('<f', data[offset:offset + 4])[0]
67+
offset += 4
68+
self.items.append((vocab, score))
69+
return offset - orig_offset
70+
71+
class Tensor:
72+
def __init__(self):
73+
self.name = None
74+
self.dims = ()
75+
self.dtype = None
76+
self.start_offset = 0
77+
self.len_bytes = 0
78+
79+
def load(self, data, offset):
80+
orig_offset = offset
81+
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
82+
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
83+
assert name_len < 4096, 'Absurd tensor name length'
84+
quant = GGML_QUANT_SIZES.get(dtype)
85+
assert quant is not None, 'Unknown tensor type'
86+
(blksize, tysize) = quant
87+
offset += 12
88+
self.dtype= dtype
89+
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
90+
offset += 4 * n_dims
91+
self.name = bytes(data[offset:offset + name_len])
92+
offset += name_len
93+
pad = ((offset + 31) & ~31) - offset
94+
offset += pad
95+
n_elems = np.prod(self.dims)
96+
n_bytes = (n_elems * tysize) // blksize
97+
self.start_offset = offset
98+
self.len_bytes = n_bytes
99+
offset += n_bytes
100+
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
101+
return offset - orig_offset
102+
103+
class GGMLV3Model:
104+
def __init__(self):
105+
self.hyperparameters = None
106+
self.vocab = None
107+
self.tensor_map = {}
108+
self.tensors = []
109+
110+
def validate_header(self, data, offset):
111+
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
112+
raise ValueError('Only GGJTv3 supported')
113+
return 8
114+
115+
def load(self, data, offset):
116+
offset += self.validate_header(data, offset)
117+
hp = Hyperparameters()
118+
offset += hp.load(data, offset)
119+
vocab = Vocab()
120+
offset += vocab.load(data, offset, hp.n_vocab)
121+
tensors = []
122+
tensor_map = {}
123+
while offset < len(data):
124+
tensor = Tensor()
125+
offset += tensor.load(data, offset)
126+
tensor_map[tensor.name] = len(tensors)
127+
tensors.append(tensor)
128+
self.hyperparameters = hp
129+
self.vocab = vocab
130+
self.tensors = tensors
131+
self.tensor_map = tensor_map
132+
hp.set_n_ff(self)
133+
return offset
134+
135+
class GGMLToGGUF:
136+
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
137+
hp = ggml_model.hyperparameters
138+
self.model = ggml_model
139+
self.data = data
140+
self.cfg = cfg
141+
self.params_override = params_override
142+
self.vocab_override = vocab_override
143+
if params_override is not None:
144+
n_kv_head = params_override.n_head_kv
145+
else:
146+
if cfg.gqa == 1:
147+
n_kv_head = hp.n_head
148+
else:
149+
gqa = float(cfg.gqa)
150+
n_kv_head = None
151+
for x in range(1, 256):
152+
if float(hp.n_head) / float(x) == gqa:
153+
n_kv_head = x
154+
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
155+
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
156+
self.n_kv_head = n_kv_head
157+
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
158+
159+
def save(self):
160+
print('* Preparing to save GGUF file')
161+
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
162+
self.add_params(gguf_writer)
163+
self.add_vocab(gguf_writer)
164+
self.add_tensors(gguf_writer)
165+
print(" gguf: write header")
166+
gguf_writer.write_header_to_file()
167+
print(" gguf: write metadata")
168+
gguf_writer.write_kv_data_to_file()
169+
print(" gguf: write tensors")
170+
gguf_writer.write_tensors_to_file()
171+
gguf_writer.close()
172+
173+
def add_params(self, gguf_writer):
174+
hp = self.model.hyperparameters
175+
cfg = self.cfg
176+
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
177+
try:
178+
# Filenames aren't necessarily valid UTF8.
179+
name = cfg.name if cfg.name is not None else cfg.input.name
180+
except UnicodeDecodeError:
181+
name = None
182+
print('* Adding model parameters and KV items')
183+
if name is not None:
184+
gguf_writer.add_name(name)
185+
gguf_writer.add_description(desc)
186+
if self.params_override is not None:
187+
po = self.params_override
188+
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
189+
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
190+
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
191+
gguf_writer.add_context_length (po.n_ctx)
192+
gguf_writer.add_embedding_length (po.n_embd)
193+
gguf_writer.add_block_count (po.n_layer)
194+
gguf_writer.add_feed_forward_length (po.n_ff)
195+
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
196+
gguf_writer.add_head_count (po.n_head)
197+
gguf_writer.add_head_count_kv (po.n_head_kv)
198+
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
199+
return
200+
gguf_writer.add_context_length(cfg.context_length)
201+
gguf_writer.add_embedding_length(hp.n_embd)
202+
gguf_writer.add_block_count(hp.n_layer)
203+
gguf_writer.add_feed_forward_length(hp.n_ff)
204+
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
205+
gguf_writer.add_head_count(hp.n_head)
206+
gguf_writer.add_head_count_kv(self.n_kv_head)
207+
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
208+
209+
def add_vocab(self, gguf_writer):
210+
hp = self.model.hyperparameters
211+
gguf_writer.add_tokenizer_model('llama')
212+
tokens = []
213+
scores = []
214+
toktypes = []
215+
if self.vocab_override is not None:
216+
vo = self.vocab_override
217+
print('* Adding vocab item(s)')
218+
for (idx, vitem) in enumerate(vo.all_tokens()):
219+
if len(vitem) == 3:
220+
tokens.append(vitem[0])
221+
scores.append(vitem[1])
222+
toktypes.append(vitem[2])
223+
else:
224+
# Maybe try to guess the token type here?
225+
tokens.append(vitem[0])
226+
scores.append(vitem[1])
227+
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
228+
gguf_writer.add_token_list(tokens)
229+
gguf_writer.add_token_scores(scores)
230+
if len(toktypes) > 0:
231+
gguf_writer.add_token_types(toktypes)
232+
return
233+
print(f'* Adding {hp.n_vocab} vocab item(s)')
234+
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
235+
tt = 1 # Normal
236+
if len(vbytes) == 0:
237+
tt = 3 # Control
238+
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
239+
hv = hex(vbytes[0])[2:].upper()
240+
vbytes = bytes(f'<0x{hv}>', encoding = 'UTF-8')
241+
tt = 6 # Byte
242+
else:
243+
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
244+
toktypes.append(tt)
245+
tokens.append(vbytes)
246+
scores.append(vscore)
247+
gguf_writer.add_token_list(tokens)
248+
gguf_writer.add_token_scores(scores)
249+
gguf_writer.add_token_types(toktypes)
250+
251+
def add_tensors(self, gguf_writer):
252+
nm = self.name_map
253+
data = self.data
254+
print(f'* Adding {len(self.model.tensors)} tensor(s)')
255+
for tensor in self.model.tensors:
256+
name = str(tensor.name, 'UTF-8')
257+
if name.endswith('.weight'):
258+
name = name[:-7]
259+
suffix = '.weight'
260+
elif name.endswith('.bias'):
261+
name = name[:-5]
262+
suffix = '.bias'
263+
mapped_name = nm.get(name)
264+
assert mapped_name is not None, f'Bad name {name}'
265+
mapped_name += suffix
266+
tempdims = list(tensor.dims[:])
267+
if len(tempdims) > 1:
268+
temp = tempdims[1]
269+
tempdims[1] = tempdims[0]
270+
tempdims[0] = temp
271+
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
272+
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
273+
274+
def handle_metadata(cfg, hp):
275+
import convert
276+
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
277+
hf_config_path = cfg.model_metadata_dir / "config.json"
278+
orig_config_path = cfg.model_metadata_dir / "params.json"
279+
# We pass a fake model here. "original" mode will check the shapes of some
280+
# tensors if information is missing in the .json file: other than that, the
281+
# model data isn't used so this should be safe (at least for now).
282+
fakemodel = {
283+
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
284+
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
285+
}
286+
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
287+
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
288+
if hf_config_path.exists():
289+
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
290+
elif orig_config_path.exists():
291+
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
292+
else:
293+
raise ValueError('Unable to load metadata')
294+
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
295+
convert.check_vocab_size(params, vocab)
296+
return (params, vocab)
297+
298+
def handle_args():
299+
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
300+
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
301+
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
302+
parser.add_argument('--name', help = 'Set model name')
303+
parser.add_argument('--desc', help = 'Set model description')
304+
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
305+
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
306+
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
307+
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
308+
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
309+
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
310+
return parser.parse_args()
311+
312+
def main():
313+
cfg = handle_args()
314+
print(f'* Using config: {cfg}')
315+
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
316+
data = np.memmap(cfg.input, mode = 'r')
317+
model = GGMLV3Model()
318+
print('* Scanning GGML input file')
319+
offset = model.load(data, 0)
320+
print(f'* GGML model hyperparameters: {model.hyperparameters}')
321+
vocab_override = None
322+
params_override = None
323+
if cfg.model_metadata_dir is not None:
324+
(params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
325+
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
326+
print(f'* Overriding params: {params_override}')
327+
print(f'* Overriding vocab: {vocab_override}')
328+
else:
329+
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
330+
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
331+
converter.save()
332+
print(f'* Successful completion. Output saved to: {cfg.output}')
333+
334+
main()

0 commit comments

Comments
 (0)