Skip to content

Commit edc4a29

Browse files
memory : Hybrid recurrent cache (#13979)
* feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <[email protected]> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: #13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent #13979 (comment) Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations #13979 (comment) Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. #13979 (comment) Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Remove llama_model_is_hybrid_Recurrent public API #13979 (comment) Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <[email protected]> --------- Signed-off-by: Gabe Goodhart <[email protected]> Co-authored-by: Georgi Gerganov <[email protected]>
1 parent ed3290a commit edc4a29

15 files changed

+1085
-462
lines changed

src/CMakeLists.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,9 @@ add_library(llama
2222
llama-io.cpp
2323
llama-kv-cache-unified.cpp
2424
llama-kv-cache-unified-iswa.cpp
25-
llama-kv-cache-recurrent.cpp
2625
llama-memory.cpp
26+
llama-memory-hybrid.cpp
27+
llama-memory-recurrent.cpp
2728
llama-mmap.cpp
2829
llama-model-loader.cpp
2930
llama-model-saver.cpp

src/llama-arch.cpp

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -147,6 +147,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
147147
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
148148
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
149149
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
150+
{ LLM_KV_ATTENTION_LAYER_INDICES, "%s.attention.layer_indices" },
150151

151152
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
152153
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -1816,3 +1817,25 @@ llm_arch llm_arch_from_string(const std::string & name) {
18161817
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor) {
18171818
return LLM_TENSOR_INFOS.at(tensor);
18181819
}
1820+
1821+
bool llm_arch_is_recurrent(const llm_arch & arch) {
1822+
switch (arch) {
1823+
case LLM_ARCH_MAMBA:
1824+
case LLM_ARCH_RWKV6:
1825+
case LLM_ARCH_RWKV6QWEN2:
1826+
case LLM_ARCH_RWKV7:
1827+
case LLM_ARCH_ARWKV7:
1828+
return true;
1829+
default:
1830+
return false;
1831+
}
1832+
}
1833+
1834+
bool llm_arch_is_hybrid(const llm_arch & arch) {
1835+
// TODO: There are currently no hybrid models! Once there are, this will be
1836+
// the place to identify them
1837+
switch (arch) {
1838+
default:
1839+
return false;
1840+
}
1841+
}

src/llama-arch.h

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -151,6 +151,7 @@ enum llm_kv {
151151
LLM_KV_ATTENTION_SCALE,
152152
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
153153
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
154+
LLM_KV_ATTENTION_LAYER_INDICES,
154155

155156
LLM_KV_ROPE_DIMENSION_COUNT,
156157
LLM_KV_ROPE_DIMENSION_SECTIONS,
@@ -439,3 +440,6 @@ const char * llm_arch_name(llm_arch arch);
439440
llm_arch llm_arch_from_string(const std::string & name);
440441

441442
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);
443+
444+
bool llm_arch_is_recurrent(const llm_arch & arch);
445+
bool llm_arch_is_hybrid (const llm_arch & arch);

0 commit comments

Comments
 (0)