|
26 | 26 | * The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license.
|
27 | 27 | * Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version.
|
28 | 28 |
|
| 29 | +### May 11, 2024 |
| 30 | +* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base. |
| 31 | + |
| 32 | +| model | top1 | top5 | param_count | img_size | |
| 33 | +| -------------------------------------------------- | ------ | ------ | ----------- | -------- | |
| 34 | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 | |
| 35 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 85.418 | 97.48 | 60.4 | 256 | |
| 36 | +| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k) | 84.322 | 96.812 | 63.95 | 256 | |
| 37 | +| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k) | 83.906 | 96.684 | 60.23 | 256 | |
| 38 | +| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k) | 83.866 | 96.67 | 86.43 | 256 | |
| 39 | +| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k) | 83.81 | 96.824 | 38.74 | 256 | |
| 40 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k) | 83.706 | 96.616 | 60.4 | 256 | |
| 41 | +| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k) | 83.628 | 96.544 | 60.4 | 256 | |
| 42 | +| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k) | 83.47 | 96.622 | 38.88 | 256 | |
| 43 | +| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k) | 83.462 | 96.548 | 38.88 | 256 | |
| 44 | +| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k) | 82.514 | 96.262 | 22.52 | 256 | |
| 45 | +| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k) | 80.072 | 95.136 | 15.25 | 256 | |
| 46 | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 | |
| 47 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 60.4 | 256 | |
| 48 | + |
| 49 | +* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949 |
| 50 | +* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods. |
| 51 | +* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests. |
| 52 | +* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used. |
| 53 | + |
29 | 54 | ### April 11, 2024
|
30 | 55 | * Prepping for a long overdue 1.0 release, things have been stable for a while now.
|
31 | 56 | * Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`)
|
|
0 commit comments