@@ -700,6 +700,10 @@ def _cfg(url='', **kwargs):
700
700
interpolation = 'bicubic' , crop_pct = 0.95 ),
701
701
'resnetv2_18d.untrained' : _cfg (
702
702
interpolation = 'bicubic' , crop_pct = 0.95 , first_conv = 'stem.conv1' ),
703
+ 'resnetv2_34.untrained' : _cfg (
704
+ interpolation = 'bicubic' , crop_pct = 0.95 ),
705
+ 'resnetv2_34d.untrained' : _cfg (
706
+ interpolation = 'bicubic' , crop_pct = 0.95 , first_conv = 'stem.conv1' ),
703
707
'resnetv2_50.a1h_in1k' : _cfg (
704
708
hf_hub_id = 'timm/' ,
705
709
interpolation = 'bicubic' , crop_pct = 0.95 , test_input_size = (3 , 288 , 288 ), test_crop_pct = 1.0 ),
@@ -784,6 +788,24 @@ def resnetv2_18d(pretrained=False, **kwargs) -> ResNetV2:
784
788
return _create_resnetv2 ('resnetv2_18d' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
785
789
786
790
791
+ @register_model
792
+ def resnetv2_34 (pretrained = False , ** kwargs ) -> ResNetV2 :
793
+ model_args = dict (
794
+ layers = (3 , 4 , 6 , 3 ), channels = (64 , 128 , 256 , 512 ), basic = True , bottle_ratio = 1.0 ,
795
+ conv_layer = create_conv2d , norm_layer = BatchNormAct2d
796
+ )
797
+ return _create_resnetv2 ('resnetv2_34' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
798
+
799
+
800
+ @register_model
801
+ def resnetv2_34d (pretrained = False , ** kwargs ) -> ResNetV2 :
802
+ model_args = dict (
803
+ layers = (3 , 4 , 6 , 3 ), channels = (64 , 128 , 256 , 512 ), basic = True , bottle_ratio = 1.0 ,
804
+ conv_layer = create_conv2d , norm_layer = BatchNormAct2d , stem_type = 'deep' , avg_down = True
805
+ )
806
+ return _create_resnetv2 ('resnetv2_34d' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
807
+
808
+
787
809
@register_model
788
810
def resnetv2_50 (pretrained = False , ** kwargs ) -> ResNetV2 :
789
811
model_args = dict (layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d )
0 commit comments