|
| 1 | +"""PyTorch SelecSLS Net example for ImageNet Classification |
| 2 | +License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) |
| 3 | +Author: Dushyant Mehta (@mehtadushy) |
| 4 | +
|
| 5 | +SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D |
| 6 | +Human Pose Estimation with a Single RGB Camera, Mehta et al." |
| 7 | +https://arxiv.org/abs/1907.00837 |
| 8 | +
|
| 9 | +Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models |
| 10 | +and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch |
| 11 | +""" |
| 12 | +import math |
| 13 | + |
| 14 | +import torch |
| 15 | +import torch.nn as nn |
| 16 | +import torch.nn.functional as F |
| 17 | + |
| 18 | +from .registry import register_model |
| 19 | +from .helpers import load_pretrained |
| 20 | +from .adaptive_avgmax_pool import SelectAdaptivePool2d |
| 21 | +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
| 22 | + |
| 23 | + |
| 24 | +__all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this |
| 25 | + |
| 26 | + |
| 27 | +def _cfg(url='', **kwargs): |
| 28 | + return { |
| 29 | + 'url': url, |
| 30 | + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (3, 3), |
| 31 | + 'crop_pct': 0.875, 'interpolation': 'bilinear', |
| 32 | + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
| 33 | + 'first_conv': 'stem', 'classifier': 'fc', |
| 34 | + **kwargs |
| 35 | + } |
| 36 | + |
| 37 | + |
| 38 | +default_cfgs = { |
| 39 | + 'selecsls42': _cfg( |
| 40 | + url='', |
| 41 | + interpolation='bicubic'), |
| 42 | + 'selecsls42_B': _cfg( |
| 43 | + url='http://gvv.mpi-inf.mpg.de/projects/XNect/assets/models/SelecSLS42_B.pth', |
| 44 | + interpolation='bicubic'), |
| 45 | + 'selecsls60': _cfg( |
| 46 | + url='', |
| 47 | + interpolation='bicubic'), |
| 48 | + 'selecsls60_B': _cfg( |
| 49 | + url='http://gvv.mpi-inf.mpg.de/projects/XNect/assets/models/SelecSLS60_B.pth', |
| 50 | + interpolation='bicubic'), |
| 51 | + 'selecsls84': _cfg( |
| 52 | + url='', |
| 53 | + interpolation='bicubic'), |
| 54 | +} |
| 55 | + |
| 56 | + |
| 57 | +def conv_bn(inp, oup, stride): |
| 58 | + return nn.Sequential( |
| 59 | + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
| 60 | + nn.BatchNorm2d(oup), |
| 61 | + nn.ReLU(inplace=True) |
| 62 | + ) |
| 63 | + |
| 64 | + |
| 65 | +def conv_1x1_bn(inp, oup): |
| 66 | + return nn.Sequential( |
| 67 | + nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
| 68 | + nn.BatchNorm2d(oup), |
| 69 | + nn.ReLU(inplace=True) |
| 70 | + ) |
| 71 | + |
| 72 | +class SelecSLSBlock(nn.Module): |
| 73 | + def __init__(self, inp, skip, k, oup, isFirst, stride): |
| 74 | + super(SelecSLSBlock, self).__init__() |
| 75 | + self.stride = stride |
| 76 | + self.isFirst = isFirst |
| 77 | + assert stride in [1, 2] |
| 78 | + |
| 79 | + #Process input with 4 conv blocks with the same number of input and output channels |
| 80 | + self.conv1 = nn.Sequential( |
| 81 | + nn.Conv2d(inp, k, 3, stride, 1,groups= 1, bias=False, dilation=1), |
| 82 | + nn.BatchNorm2d(k), |
| 83 | + nn.ReLU(inplace=True) |
| 84 | + ) |
| 85 | + self.conv2 = nn.Sequential( |
| 86 | + nn.Conv2d(k, k, 1, 1, 0,groups= 1, bias=False, dilation=1), |
| 87 | + nn.BatchNorm2d(k), |
| 88 | + nn.ReLU(inplace=True) |
| 89 | + ) |
| 90 | + self.conv3 = nn.Sequential( |
| 91 | + nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1), |
| 92 | + nn.BatchNorm2d(k//2), |
| 93 | + nn.ReLU(inplace=True) |
| 94 | + ) |
| 95 | + self.conv4 = nn.Sequential( |
| 96 | + nn.Conv2d(k//2, k, 1, 1, 0,groups= 1, bias=False, dilation=1), |
| 97 | + nn.BatchNorm2d(k), |
| 98 | + nn.ReLU(inplace=True) |
| 99 | + ) |
| 100 | + self.conv5 = nn.Sequential( |
| 101 | + nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1), |
| 102 | + nn.BatchNorm2d(k//2), |
| 103 | + nn.ReLU(inplace=True) |
| 104 | + ) |
| 105 | + self.conv6 = nn.Sequential( |
| 106 | + nn.Conv2d(2*k + (0 if isFirst else skip), oup, 1, 1, 0,groups= 1, bias=False, dilation=1), |
| 107 | + nn.BatchNorm2d(oup), |
| 108 | + nn.ReLU(inplace=True) |
| 109 | + ) |
| 110 | + |
| 111 | + def forward(self, x): |
| 112 | + assert isinstance(x,list) |
| 113 | + assert len(x) in [1,2] |
| 114 | + |
| 115 | + d1 = self.conv1(x[0]) |
| 116 | + d2 = self.conv3(self.conv2(d1)) |
| 117 | + d3 = self.conv5(self.conv4(d2)) |
| 118 | + if self.isFirst: |
| 119 | + out = self.conv6(torch.cat([d1, d2, d3], 1)) |
| 120 | + return [out, out] |
| 121 | + else: |
| 122 | + return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)) , x[1]] |
| 123 | + |
| 124 | +class SelecSLS(nn.Module): |
| 125 | + """SelecSLS42 / SelecSLS60 / SelecSLS84 |
| 126 | +
|
| 127 | + Parameters |
| 128 | + ---------- |
| 129 | + cfg : network config |
| 130 | + String indicating the network config |
| 131 | + num_classes : int, default 1000 |
| 132 | + Number of classification classes. |
| 133 | + in_chans : int, default 3 |
| 134 | + Number of input (color) channels. |
| 135 | + drop_rate : float, default 0. |
| 136 | + Dropout probability before classifier, for training |
| 137 | + global_pool : str, default 'avg' |
| 138 | + Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' |
| 139 | + """ |
| 140 | + def __init__(self, cfg='selecsls60', num_classes=1000, in_chans=3, |
| 141 | + drop_rate=0.0, global_pool='avg'): |
| 142 | + self.num_classes = num_classes |
| 143 | + self.drop_rate = drop_rate |
| 144 | + super(SelecSLS, self).__init__() |
| 145 | + |
| 146 | + self.stem = conv_bn(in_chans, 32, 2) |
| 147 | + #Core Network |
| 148 | + self.features = [] |
| 149 | + if cfg=='selecsls42': |
| 150 | + self.block = SelecSLSBlock |
| 151 | + #Define configuration of the network after the initial neck |
| 152 | + self.selecSLS_config = [ |
| 153 | + #inp,skip, k, oup, isFirst, stride |
| 154 | + [ 32, 0, 64, 64, True, 2], |
| 155 | + [ 64, 64, 64, 128, False, 1], |
| 156 | + [128, 0, 144, 144, True, 2], |
| 157 | + [144, 144, 144, 288, False, 1], |
| 158 | + [288, 0, 304, 304, True, 2], |
| 159 | + [304, 304, 304, 480, False, 1], |
| 160 | + ] |
| 161 | + #Head can be replaced with alternative configurations depending on the problem |
| 162 | + self.head = nn.Sequential( |
| 163 | + conv_bn(480, 960, 2), |
| 164 | + conv_bn(960, 1024, 1), |
| 165 | + conv_bn(1024, 1024, 2), |
| 166 | + conv_1x1_bn(1024, 1280), |
| 167 | + ) |
| 168 | + self.num_features = 1280 |
| 169 | + elif cfg=='selecsls42_B': |
| 170 | + self.block = SelecSLSBlock |
| 171 | + #Define configuration of the network after the initial neck |
| 172 | + self.selecSLS_config = [ |
| 173 | + #inp,skip, k, oup, isFirst, stride |
| 174 | + [ 32, 0, 64, 64, True, 2], |
| 175 | + [ 64, 64, 64, 128, False, 1], |
| 176 | + [128, 0, 144, 144, True, 2], |
| 177 | + [144, 144, 144, 288, False, 1], |
| 178 | + [288, 0, 304, 304, True, 2], |
| 179 | + [304, 304, 304, 480, False, 1], |
| 180 | + ] |
| 181 | + #Head can be replaced with alternative configurations depending on the problem |
| 182 | + self.head = nn.Sequential( |
| 183 | + conv_bn(480, 960, 2), |
| 184 | + conv_bn(960, 1024, 1), |
| 185 | + conv_bn(1024, 1280, 2), |
| 186 | + conv_1x1_bn(1280, 1024), |
| 187 | + ) |
| 188 | + self.num_features = 1024 |
| 189 | + elif cfg=='selecsls60': |
| 190 | + self.block = SelecSLSBlock |
| 191 | + #Define configuration of the network after the initial neck |
| 192 | + self.selecSLS_config = [ |
| 193 | + #inp,skip, k, oup, isFirst, stride |
| 194 | + [ 32, 0, 64, 64, True, 2], |
| 195 | + [ 64, 64, 64, 128, False, 1], |
| 196 | + [128, 0, 128, 128, True, 2], |
| 197 | + [128, 128, 128, 128, False, 1], |
| 198 | + [128, 128, 128, 288, False, 1], |
| 199 | + [288, 0, 288, 288, True, 2], |
| 200 | + [288, 288, 288, 288, False, 1], |
| 201 | + [288, 288, 288, 288, False, 1], |
| 202 | + [288, 288, 288, 416, False, 1], |
| 203 | + ] |
| 204 | + #Head can be replaced with alternative configurations depending on the problem |
| 205 | + self.head = nn.Sequential( |
| 206 | + conv_bn(416, 756, 2), |
| 207 | + conv_bn(756, 1024, 1), |
| 208 | + conv_bn(1024, 1024, 2), |
| 209 | + conv_1x1_bn(1024, 1280), |
| 210 | + ) |
| 211 | + self.num_features = 1280 |
| 212 | + elif cfg=='selecsls60_B': |
| 213 | + self.block = SelecSLSBlock |
| 214 | + #Define configuration of the network after the initial neck |
| 215 | + self.selecSLS_config = [ |
| 216 | + #inp,skip, k, oup, isFirst, stride |
| 217 | + [ 32, 0, 64, 64, True, 2], |
| 218 | + [ 64, 64, 64, 128, False, 1], |
| 219 | + [128, 0, 128, 128, True, 2], |
| 220 | + [128, 128, 128, 128, False, 1], |
| 221 | + [128, 128, 128, 288, False, 1], |
| 222 | + [288, 0, 288, 288, True, 2], |
| 223 | + [288, 288, 288, 288, False, 1], |
| 224 | + [288, 288, 288, 288, False, 1], |
| 225 | + [288, 288, 288, 416, False, 1], |
| 226 | + ] |
| 227 | + #Head can be replaced with alternative configurations depending on the problem |
| 228 | + self.head = nn.Sequential( |
| 229 | + conv_bn(416, 756, 2), |
| 230 | + conv_bn(756, 1024, 1), |
| 231 | + conv_bn(1024, 1280, 2), |
| 232 | + conv_1x1_bn(1280, 1024), |
| 233 | + ) |
| 234 | + self.num_features = 1024 |
| 235 | + elif cfg=='selecsls84': |
| 236 | + self.block = SelecSLSBlock |
| 237 | + #Define configuration of the network after the initial neck |
| 238 | + self.selecSLS_config = [ |
| 239 | + #inp,skip, k, oup, isFirst, stride |
| 240 | + [ 32, 0, 64, 64, True, 2], |
| 241 | + [ 64, 64, 64, 144, False, 1], |
| 242 | + [144, 0, 144, 144, True, 2], |
| 243 | + [144, 144, 144, 144, False, 1], |
| 244 | + [144, 144, 144, 144, False, 1], |
| 245 | + [144, 144, 144, 144, False, 1], |
| 246 | + [144, 144, 144, 304, False, 1], |
| 247 | + [304, 0, 304, 304, True, 2], |
| 248 | + [304, 304, 304, 304, False, 1], |
| 249 | + [304, 304, 304, 304, False, 1], |
| 250 | + [304, 304, 304, 304, False, 1], |
| 251 | + [304, 304, 304, 304, False, 1], |
| 252 | + [304, 304, 304, 512, False, 1], |
| 253 | + ] |
| 254 | + #Head can be replaced with alternative configurations depending on the problem |
| 255 | + self.head = nn.Sequential( |
| 256 | + conv_bn(512, 960, 2), |
| 257 | + conv_bn(960, 1024, 1), |
| 258 | + conv_bn(1024, 1024, 2), |
| 259 | + conv_1x1_bn(1024, 1280), |
| 260 | + ) |
| 261 | + self.num_features = 1280 |
| 262 | + else: |
| 263 | + raise ValueError('Invalid net configuration '+cfg+' !!!') |
| 264 | + |
| 265 | + for inp, skip, k, oup, isFirst, stride in self.selecSLS_config: |
| 266 | + self.features.append(self.block(inp, skip, k, oup, isFirst, stride)) |
| 267 | + self.features = nn.Sequential(*self.features) |
| 268 | + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
| 269 | + self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) |
| 270 | + |
| 271 | + for n, m in self.named_modules(): |
| 272 | + if isinstance(m, nn.Conv2d): |
| 273 | + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
| 274 | + elif isinstance(m, nn.BatchNorm2d): |
| 275 | + nn.init.constant_(m.weight, 1.) |
| 276 | + nn.init.constant_(m.bias, 0.) |
| 277 | + |
| 278 | + def get_classifier(self): |
| 279 | + return self.fc |
| 280 | + |
| 281 | + def reset_classifier(self, num_classes, global_pool='avg'): |
| 282 | + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
| 283 | + self.num_classes = num_classes |
| 284 | + del self.fc |
| 285 | + if num_classes: |
| 286 | + self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) |
| 287 | + else: |
| 288 | + self.fc = None |
| 289 | + |
| 290 | + def forward_features(self, x, pool=True): |
| 291 | + x = self.stem(x) |
| 292 | + x = self.features([x]) |
| 293 | + x = self.head(x[0]) |
| 294 | + |
| 295 | + if pool: |
| 296 | + x = self.global_pool(x) |
| 297 | + x = x.view(x.size(0), -1) |
| 298 | + return x |
| 299 | + |
| 300 | + def forward(self, x): |
| 301 | + x = self.forward_features(x) |
| 302 | + if self.drop_rate > 0.: |
| 303 | + x = F.dropout(x, p=self.drop_rate, training=self.training) |
| 304 | + x = self.fc(x) |
| 305 | + return x |
| 306 | + |
| 307 | + |
| 308 | +@register_model |
| 309 | +def selecsls42(pretrained=False, num_classes=1000, in_chans=3, **kwargs): |
| 310 | + """Constructs a SelecSLS42 model. |
| 311 | + """ |
| 312 | + default_cfg = default_cfgs['selecsls42'] |
| 313 | + model = SelecSLS( |
| 314 | + cfg='selecsls42', num_classes=1000, in_chans=3, **kwargs) |
| 315 | + model.default_cfg = default_cfg |
| 316 | + if pretrained: |
| 317 | + load_pretrained(model, default_cfg, num_classes, in_chans) |
| 318 | + return model |
| 319 | + |
| 320 | +@register_model |
| 321 | +def selecsls42_B(pretrained=False, num_classes=1000, in_chans=3, **kwargs): |
| 322 | + """Constructs a SelecSLS42_B model. |
| 323 | + """ |
| 324 | + default_cfg = default_cfgs['selecsls42_B'] |
| 325 | + model = SelecSLS( |
| 326 | + cfg='selecsls42_B', num_classes=1000, in_chans=3,**kwargs) |
| 327 | + model.default_cfg = default_cfg |
| 328 | + if pretrained: |
| 329 | + load_pretrained(model, default_cfg, num_classes, in_chans) |
| 330 | + return model |
| 331 | + |
| 332 | +@register_model |
| 333 | +def selecsls60(pretrained=False, num_classes=1000, in_chans=3, **kwargs): |
| 334 | + """Constructs a SelecSLS60 model. |
| 335 | + """ |
| 336 | + default_cfg = default_cfgs['selecsls60'] |
| 337 | + model = SelecSLS( |
| 338 | + cfg='selecsls60', num_classes=1000, in_chans=3,**kwargs) |
| 339 | + model.default_cfg = default_cfg |
| 340 | + if pretrained: |
| 341 | + load_pretrained(model, default_cfg, num_classes, in_chans) |
| 342 | + return model |
| 343 | + |
| 344 | + |
| 345 | +@register_model |
| 346 | +def selecsls60_B(pretrained=False, num_classes=1000, in_chans=3, **kwargs): |
| 347 | + """Constructs a SelecSLS60_B model. |
| 348 | + """ |
| 349 | + default_cfg = default_cfgs['selecsls60_B'] |
| 350 | + model = SelecSLS( |
| 351 | + cfg='selecsls60_B', num_classes=1000, in_chans=3,**kwargs) |
| 352 | + model.default_cfg = default_cfg |
| 353 | + if pretrained: |
| 354 | + load_pretrained(model, default_cfg, num_classes, in_chans) |
| 355 | + return model |
| 356 | + |
| 357 | +@register_model |
| 358 | +def selecsls84(pretrained=False, num_classes=1000, in_chans=3, **kwargs): |
| 359 | + """Constructs a SelecSLS84 model. |
| 360 | + """ |
| 361 | + default_cfg = default_cfgs['selecsls84'] |
| 362 | + model = SelecSLS( |
| 363 | + cfg='selecsls84', num_classes=1000, in_chans=3, **kwargs) |
| 364 | + model.default_cfg = default_cfg |
| 365 | + if pretrained: |
| 366 | + load_pretrained(model, default_cfg, num_classes, in_chans) |
| 367 | + return model |
| 368 | + |
0 commit comments