|
| 1 | +#include "optimizer.h" |
| 2 | + |
| 3 | +#include <torch/csrc/autograd/function.h> |
| 4 | +#include <torch/extension.h> |
| 5 | +#include "csrc/utils/ipex_op_profile.h" |
| 6 | + |
| 7 | +namespace torch_ipex { |
| 8 | +namespace cpu { |
| 9 | + |
| 10 | +DEFINE_DISPATCH(adam_fused_step_kernel_stub); |
| 11 | + |
| 12 | +void adam_fused_step( |
| 13 | + const at::Tensor& param_, |
| 14 | + const at::Tensor& exp_avg_, |
| 15 | + const at::Tensor& exp_avg_sq_, |
| 16 | + const at::Tensor& max_exp_avg_sq_, |
| 17 | + const at::Tensor& grad_, |
| 18 | + const at::Tensor& param2_, |
| 19 | + bool amsgrad, |
| 20 | + double step, |
| 21 | + double beta1, |
| 22 | + double beta2, |
| 23 | + double learning_rate, |
| 24 | + double weight_decay, |
| 25 | + double eps) { |
| 26 | + IPEX_RECORD_FUNCTION( |
| 27 | + "torch_ipex::adam_fused_step", c10::ArrayRef<c10::IValue>({})); |
| 28 | + |
| 29 | + TORCH_CHECK( |
| 30 | + learning_rate >= 0, "Expect learning rate >= 0.0, got ", learning_rate); |
| 31 | + TORCH_CHECK(eps >= 0, "Expect eps >= 0.0, got ", eps); |
| 32 | + TORCH_CHECK(beta1 >= 0 && beta1 < 1, "Expect 0.0 <= beta1 < 1.0, got", beta1); |
| 33 | + TORCH_CHECK(beta2 >= 0 && beta2 < 1, "Expect 0.0 <= beta2 < 1.0, got", beta2); |
| 34 | + TORCH_CHECK( |
| 35 | + weight_decay >= 0, "Expect weight_decay >= 0.0, got ", weight_decay); |
| 36 | + |
| 37 | + TORCH_CHECK( |
| 38 | + param_.sizes() == grad_.sizes(), |
| 39 | + "Expect param and grad have the same sizes, param sizes: ", |
| 40 | + param_.sizes(), |
| 41 | + "; grad sizes: ", |
| 42 | + grad_.sizes()); |
| 43 | + TORCH_CHECK( |
| 44 | + param_.sizes() == exp_avg_.sizes(), |
| 45 | + "Expect param and exp_avg have the same sizes, param sizes: ", |
| 46 | + param_.sizes(), |
| 47 | + "; exp_avg sizes: ", |
| 48 | + exp_avg_.sizes()); |
| 49 | + TORCH_CHECK( |
| 50 | + param_.sizes() == exp_avg_sq_.sizes(), |
| 51 | + "Expect param and exp_avg_sq_ have the same sizes, param sizes: ", |
| 52 | + param_.sizes(), |
| 53 | + "; exp_avg_sq sizes: ", |
| 54 | + exp_avg_sq_.sizes()); |
| 55 | + if (amsgrad) { |
| 56 | + TORCH_CHECK( |
| 57 | + param_.sizes() == max_exp_avg_sq_.sizes(), |
| 58 | + "Expect param and max_exp_avg_sq_ have the same sizes, param sizes: ", |
| 59 | + param_.sizes(), |
| 60 | + "; max_exp_avg_sq sizes: ", |
| 61 | + max_exp_avg_sq_.sizes()); |
| 62 | + } |
| 63 | + TORCH_CHECK( |
| 64 | + param2_.numel() == 0 || param_.sizes() == param2_.sizes(), |
| 65 | + "Expect param and param2_ have the same sizes, param sizes: ", |
| 66 | + param_.sizes(), |
| 67 | + "; param2_ sizes: ", |
| 68 | + param2_.sizes()); |
| 69 | + |
| 70 | + /* |
| 71 | + pointer to adam_fused_step_kernel_impl( |
| 72 | + param_, |
| 73 | + exp_avg_, |
| 74 | + exp_avg_sq_, |
| 75 | + max_exp_avg_sq_, |
| 76 | + grad_, |
| 77 | + param2_, |
| 78 | + amsgrad, |
| 79 | + step, |
| 80 | + beta1, |
| 81 | + beta2, |
| 82 | + learning_rate, |
| 83 | + weight_decay, |
| 84 | + eps); |
| 85 | + */ |
| 86 | + adam_fused_step_kernel_stub( |
| 87 | + kCPU, |
| 88 | + param_, |
| 89 | + exp_avg_, |
| 90 | + exp_avg_sq_, |
| 91 | + max_exp_avg_sq_, |
| 92 | + grad_, |
| 93 | + param2_, |
| 94 | + amsgrad, |
| 95 | + step, |
| 96 | + beta1, |
| 97 | + beta2, |
| 98 | + learning_rate, |
| 99 | + weight_decay, |
| 100 | + eps); |
| 101 | +} |
| 102 | + |
| 103 | +} // namespace cpu |
| 104 | +} // namespace torch_ipex |
| 105 | + |
| 106 | +namespace { |
| 107 | + |
| 108 | +TORCH_LIBRARY_FRAGMENT(torch_ipex, m) { |
| 109 | + m.def( |
| 110 | + "adam_fused_step(Tensor(a!) param, Tensor(b!) exp_avg, Tensor(c!) " |
| 111 | + "exp_avg_sq, Tensor(d!) max_exp_avg_sq, Tensor grad, Tensor trail, " |
| 112 | + "bool amsgrad, float step, float beta1, float " |
| 113 | + "beta2, float lr, float weight_decay, float eps) -> ()", |
| 114 | + torch_ipex::cpu::adam_fused_step); |
| 115 | +} |
| 116 | + |
| 117 | +} // namespace |
0 commit comments