|
| 1 | +// REQUIRES: cuda |
| 2 | +// RUN: %clangxx -fsycl -fsycl-targets=%sycl_triple %s -o %t.out -Xsycl-target-backend --cuda-gpu-arch=sm_80 |
| 3 | +// RUN: %t.out |
| 4 | + |
| 5 | +#include <CL/sycl.hpp> |
| 6 | + |
| 7 | +#include <cmath> |
| 8 | +#include <vector> |
| 9 | + |
| 10 | +using namespace cl::sycl; |
| 11 | +using sycl::ext::oneapi::experimental::bfloat16; |
| 12 | + |
| 13 | +constexpr int N = 60; // divisible by all tested array sizes |
| 14 | +constexpr float bf16_eps = 0.00390625; |
| 15 | + |
| 16 | +float make_fp32(uint16_t x) { |
| 17 | + uint32_t y = x; |
| 18 | + y = y << 16; |
| 19 | + auto res = reinterpret_cast<float *>(&y); |
| 20 | + return *res; |
| 21 | +} |
| 22 | + |
| 23 | +bool check(float a, float b) { |
| 24 | + return fabs(2 * (a - b) / (a + b)) > bf16_eps * 2; |
| 25 | +} |
| 26 | + |
| 27 | +#define TEST_BUILTIN_1_SCAL_IMPL(NAME) \ |
| 28 | + { \ |
| 29 | + buffer<float> a_buf(&a[0], N); \ |
| 30 | + buffer<int> err_buf(&err, 1); \ |
| 31 | + q.submit([&](handler &cgh) { \ |
| 32 | + accessor<float, 1, access::mode::read_write, target::device> A(a_buf, \ |
| 33 | + cgh); \ |
| 34 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 35 | + cgh.parallel_for(N, [=](id<1> index) { \ |
| 36 | + if (check(make_fp32(NAME(bfloat16{A[index]}).raw()), \ |
| 37 | + NAME(A[index]))) { \ |
| 38 | + ERR[0] = 1; \ |
| 39 | + } \ |
| 40 | + }); \ |
| 41 | + }); \ |
| 42 | + } \ |
| 43 | + assert(err == 0); |
| 44 | + |
| 45 | +#define TEST_BUILTIN_1_ARR_IMPL(NAME, SZ) \ |
| 46 | + { \ |
| 47 | + buffer<float, 2> a_buf{range<2>{N / SZ, SZ}}; \ |
| 48 | + buffer<int> err_buf(&err, 1); \ |
| 49 | + q.submit([&](handler &cgh) { \ |
| 50 | + accessor<float, 2, access::mode::read_write, target::device> A(a_buf, \ |
| 51 | + cgh); \ |
| 52 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 53 | + cgh.parallel_for(N / SZ, [=](id<1> index) { \ |
| 54 | + marray<bfloat16, SZ> arg; \ |
| 55 | + for (int i = 0; i < SZ; i++) { \ |
| 56 | + arg[i] = A[index][i]; \ |
| 57 | + } \ |
| 58 | + marray<bfloat16, SZ> res = NAME(arg); \ |
| 59 | + for (int i = 0; i < SZ; i++) { \ |
| 60 | + if (check(make_fp32(res[i].raw()), NAME(A[index][i]))) { \ |
| 61 | + ERR[0] = 1; \ |
| 62 | + } \ |
| 63 | + } \ |
| 64 | + }); \ |
| 65 | + }); \ |
| 66 | + } \ |
| 67 | + assert(err == 0); |
| 68 | + |
| 69 | +#define TEST_BUILTIN_1(NAME) \ |
| 70 | + TEST_BUILTIN_1_SCAL_IMPL(NAME) \ |
| 71 | + TEST_BUILTIN_1_ARR_IMPL(NAME, 1) \ |
| 72 | + TEST_BUILTIN_1_ARR_IMPL(NAME, 2) \ |
| 73 | + TEST_BUILTIN_1_ARR_IMPL(NAME, 3) \ |
| 74 | + TEST_BUILTIN_1_ARR_IMPL(NAME, 4) \ |
| 75 | + TEST_BUILTIN_1_ARR_IMPL(NAME, 5) |
| 76 | + |
| 77 | +#define TEST_BUILTIN_2_SCAL_IMPL(NAME) \ |
| 78 | + { \ |
| 79 | + buffer<float> a_buf(&a[0], N); \ |
| 80 | + buffer<float> b_buf(&b[0], N); \ |
| 81 | + buffer<int> err_buf(&err, 1); \ |
| 82 | + q.submit([&](handler &cgh) { \ |
| 83 | + accessor<float, 1, access::mode::read_write, target::device> A(a_buf, \ |
| 84 | + cgh); \ |
| 85 | + accessor<float, 1, access::mode::read_write, target::device> B(b_buf, \ |
| 86 | + cgh); \ |
| 87 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 88 | + cgh.parallel_for(N, [=](id<1> index) { \ |
| 89 | + if (check( \ |
| 90 | + make_fp32(NAME(bfloat16{A[index]}, bfloat16{B[index]}).raw()), \ |
| 91 | + NAME(A[index], B[index]))) { \ |
| 92 | + ERR[0] = 1; \ |
| 93 | + } \ |
| 94 | + }); \ |
| 95 | + }); \ |
| 96 | + } \ |
| 97 | + assert(err == 0); |
| 98 | + |
| 99 | +#define TEST_BUILTIN_2_ARR_IMPL(NAME, SZ) \ |
| 100 | + { \ |
| 101 | + buffer<float, 2> a_buf{range<2>{N / SZ, SZ}}; \ |
| 102 | + buffer<float, 2> b_buf{range<2>{N / SZ, SZ}}; \ |
| 103 | + buffer<int> err_buf(&err, 1); \ |
| 104 | + q.submit([&](handler &cgh) { \ |
| 105 | + accessor<float, 2, access::mode::read_write, target::device> A(a_buf, \ |
| 106 | + cgh); \ |
| 107 | + accessor<float, 2, access::mode::read_write, target::device> B(b_buf, \ |
| 108 | + cgh); \ |
| 109 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 110 | + cgh.parallel_for(N / SZ, [=](id<1> index) { \ |
| 111 | + marray<bfloat16, SZ> arg0, arg1; \ |
| 112 | + for (int i = 0; i < SZ; i++) { \ |
| 113 | + arg0[i] = A[index][i]; \ |
| 114 | + arg1[i] = B[index][i]; \ |
| 115 | + } \ |
| 116 | + marray<bfloat16, SZ> res = NAME(arg0, arg1); \ |
| 117 | + for (int i = 0; i < SZ; i++) { \ |
| 118 | + if (check(make_fp32(res[i].raw()), \ |
| 119 | + NAME(A[index][i], B[index][i]))) { \ |
| 120 | + ERR[0] = 1; \ |
| 121 | + } \ |
| 122 | + } \ |
| 123 | + }); \ |
| 124 | + }); \ |
| 125 | + } \ |
| 126 | + assert(err == 0); |
| 127 | + |
| 128 | +#define TEST_BUILTIN_2(NAME) \ |
| 129 | + TEST_BUILTIN_2_SCAL_IMPL(NAME) \ |
| 130 | + TEST_BUILTIN_2_ARR_IMPL(NAME, 1) \ |
| 131 | + TEST_BUILTIN_2_ARR_IMPL(NAME, 2) \ |
| 132 | + TEST_BUILTIN_2_ARR_IMPL(NAME, 3) \ |
| 133 | + TEST_BUILTIN_2_ARR_IMPL(NAME, 4) \ |
| 134 | + TEST_BUILTIN_2_ARR_IMPL(NAME, 5) |
| 135 | + |
| 136 | +#define TEST_BUILTIN_3_SCAL_IMPL(NAME) \ |
| 137 | + { \ |
| 138 | + buffer<float> a_buf(&a[0], N); \ |
| 139 | + buffer<float> b_buf(&b[0], N); \ |
| 140 | + buffer<float> c_buf(&c[0], N); \ |
| 141 | + buffer<int> err_buf(&err, 1); \ |
| 142 | + q.submit([&](handler &cgh) { \ |
| 143 | + accessor<float, 1, access::mode::read_write, target::device> A(a_buf, \ |
| 144 | + cgh); \ |
| 145 | + accessor<float, 1, access::mode::read_write, target::device> B(b_buf, \ |
| 146 | + cgh); \ |
| 147 | + accessor<float, 1, access::mode::read_write, target::device> C(c_buf, \ |
| 148 | + cgh); \ |
| 149 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 150 | + cgh.parallel_for(N, [=](id<1> index) { \ |
| 151 | + if (check(make_fp32(NAME(bfloat16{A[index]}, bfloat16{B[index]}, \ |
| 152 | + bfloat16{C[index]}) \ |
| 153 | + .raw()), \ |
| 154 | + NAME(A[index], B[index], C[index]))) { \ |
| 155 | + ERR[0] = 1; \ |
| 156 | + } \ |
| 157 | + }); \ |
| 158 | + }); \ |
| 159 | + } \ |
| 160 | + assert(err == 0); |
| 161 | + |
| 162 | +#define TEST_BUILTIN_3_ARR_IMPL(NAME, SZ) \ |
| 163 | + { \ |
| 164 | + buffer<float, 2> a_buf{range<2>{N / SZ, SZ}}; \ |
| 165 | + buffer<float, 2> b_buf{range<2>{N / SZ, SZ}}; \ |
| 166 | + buffer<float, 2> c_buf{range<2>{N / SZ, SZ}}; \ |
| 167 | + buffer<int> err_buf(&err, 1); \ |
| 168 | + q.submit([&](handler &cgh) { \ |
| 169 | + accessor<float, 2, access::mode::read_write, target::device> A(a_buf, \ |
| 170 | + cgh); \ |
| 171 | + accessor<float, 2, access::mode::read_write, target::device> B(b_buf, \ |
| 172 | + cgh); \ |
| 173 | + accessor<float, 2, access::mode::read_write, target::device> C(c_buf, \ |
| 174 | + cgh); \ |
| 175 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 176 | + cgh.parallel_for(N / SZ, [=](id<1> index) { \ |
| 177 | + marray<bfloat16, SZ> arg0, arg1, arg2; \ |
| 178 | + for (int i = 0; i < SZ; i++) { \ |
| 179 | + arg0[i] = A[index][i]; \ |
| 180 | + arg1[i] = B[index][i]; \ |
| 181 | + arg2[i] = C[index][i]; \ |
| 182 | + } \ |
| 183 | + marray<bfloat16, SZ> res = NAME(arg0, arg1, arg2); \ |
| 184 | + for (int i = 0; i < SZ; i++) { \ |
| 185 | + if (check(make_fp32(res[i].raw()), \ |
| 186 | + NAME(A[index][i], B[index][i], C[index][i]))) { \ |
| 187 | + ERR[0] = 1; \ |
| 188 | + } \ |
| 189 | + } \ |
| 190 | + }); \ |
| 191 | + }); \ |
| 192 | + } \ |
| 193 | + assert(err == 0); |
| 194 | + |
| 195 | +#define TEST_BUILTIN_3(NAME) \ |
| 196 | + TEST_BUILTIN_3_SCAL_IMPL(NAME) \ |
| 197 | + TEST_BUILTIN_3_ARR_IMPL(NAME, 1) \ |
| 198 | + TEST_BUILTIN_3_ARR_IMPL(NAME, 2) \ |
| 199 | + TEST_BUILTIN_3_ARR_IMPL(NAME, 3) \ |
| 200 | + TEST_BUILTIN_3_ARR_IMPL(NAME, 4) \ |
| 201 | + TEST_BUILTIN_3_ARR_IMPL(NAME, 5) |
| 202 | + |
| 203 | +#define TEST_BUILTIN_2_NAN(NAME) \ |
| 204 | + { \ |
| 205 | + buffer<int> err_buf(&err, 1); \ |
| 206 | + buffer<float> nan_buf(&check_nan, 1); \ |
| 207 | + q.submit([&](handler &cgh) { \ |
| 208 | + accessor<int, 1, access::mode::write, target::device> ERR(err_buf, cgh); \ |
| 209 | + accessor<float, 1, access::mode::write, target::device> checkNAN( \ |
| 210 | + nan_buf, cgh); \ |
| 211 | + cgh.single_task([=]() { \ |
| 212 | + checkNAN[0] = make_fp32(NAME(bfloat16{NAN}, bfloat16{NAN}).raw()); \ |
| 213 | + if ((make_fp32(NAME(bfloat16{2}, bfloat16{NAN}).raw()) != 2) || \ |
| 214 | + (make_fp32(NAME(bfloat16{NAN}, bfloat16{2}).raw()) != 2)) { \ |
| 215 | + ERR[0] = 1; \ |
| 216 | + } \ |
| 217 | + }); \ |
| 218 | + }); \ |
| 219 | + } \ |
| 220 | + assert(err == 0); \ |
| 221 | + assert(std::isnan(check_nan)); |
| 222 | + |
| 223 | +int main() { |
| 224 | + queue q; |
| 225 | + |
| 226 | + auto computeCapability = |
| 227 | + std::stof(q.get_device().get_info<sycl::info::device::backend_version>()); |
| 228 | + // TODO check for "ext_oneapi_bfloat16" aspect instead once aspect is |
| 229 | + // supported. Since this test only covers CUDA the current check is |
| 230 | + // functionally equivalent to "ext_oneapi_bfloat16". |
| 231 | + if (computeCapability >= 8.0) { |
| 232 | + std::vector<float> a(N), b(N), c(N); |
| 233 | + int err = 0; |
| 234 | + |
| 235 | + for (int i = 0; i < N; i++) { |
| 236 | + a[i] = (i - N / 2) / (float)N; |
| 237 | + b[i] = (N / 2 - i) / (float)N; |
| 238 | + c[i] = (float)(3 * i); |
| 239 | + } |
| 240 | + |
| 241 | + TEST_BUILTIN_1(fabs); |
| 242 | + TEST_BUILTIN_2(fmin); |
| 243 | + TEST_BUILTIN_2(fmax); |
| 244 | + TEST_BUILTIN_3(fma); |
| 245 | + |
| 246 | + float check_nan = 0; |
| 247 | + TEST_BUILTIN_2_NAN(fmin); |
| 248 | + TEST_BUILTIN_2_NAN(fmax); |
| 249 | + } |
| 250 | + return 0; |
| 251 | +} |
0 commit comments