Skip to content
This repository was archived by the owner on Mar 28, 2023. It is now read-only.

Commit 53adf48

Browse files
authored
[SYCL][Matrix] add a new test for slicing feature where matrix size does not multiply sg size (#756)
Signed-off-by: Dounia Khaldi <[email protected]>
1 parent b90df37 commit 53adf48

File tree

1 file changed

+190
-0
lines changed

1 file changed

+190
-0
lines changed
Lines changed: 190 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,190 @@
1+
//==-------- elemwise_irreg_size_ops_bf16.cpp - DPC++ joint_matrix---- ----==//
2+
//
3+
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4+
// See https://llvm.org/LICENSE.txt for license information.
5+
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6+
//
7+
//===----------------------------------------------------------------------===//
8+
// REQUIRES: matrix
9+
10+
// RUN: %clangxx -fsycl %s -o %t.out
11+
// This test is for element wise operations when matrix size does not multiply
12+
// SG size. This corner case only applies to AMX. Also, it tests bf16 type.
13+
// only run this on AMX
14+
// RUN: %CPU_RUN_PLACEHOLDER %t.out
15+
16+
#include <CL/sycl.hpp>
17+
#include <iostream>
18+
19+
using namespace sycl;
20+
using namespace sycl::ext::oneapi::experimental::matrix;
21+
22+
#define SG_SZ 16
23+
24+
// 10x12 is not multiply the sg size, slicing implementation will have to insert
25+
// padding
26+
#define TM 10
27+
#define TN 12
28+
#define TK 16
29+
30+
template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
31+
public:
32+
T *mat;
33+
34+
public:
35+
T *get_data() { return mat; }
36+
void set_data(T *data) { mat = data; }
37+
big_matrix(T *data) : mat(data) {}
38+
};
39+
40+
template <typename T1, typename T2, size_t NUM_ROWS_A, size_t NUM_COLS_A,
41+
size_t NUM_ROWS_B, size_t NUM_COLS_B, size_t NUM_ROWS_C,
42+
size_t NUM_COLS_C>
43+
void matrix_multiply(big_matrix<T1, NUM_ROWS_C, NUM_COLS_C> &C,
44+
big_matrix<T2, NUM_ROWS_A, NUM_COLS_A> &A,
45+
big_matrix<T2, NUM_ROWS_B, NUM_COLS_B> &B) {
46+
size_t M = NUM_ROWS_C;
47+
size_t N = NUM_COLS_C;
48+
size_t K = NUM_COLS_A;
49+
50+
assert(NUM_ROWS_C == NUM_ROWS_A && NUM_COLS_A == NUM_ROWS_B * 2);
51+
size_t NDRangeM = M / TM;
52+
size_t NDRangeN = N / TN;
53+
buffer<unsigned short, 2> bufA(A.get_data(), range<2>(M, K));
54+
buffer<unsigned short, 2> bufB(B.get_data(), range<2>(K / 2, N * 2));
55+
buffer<float, 2> bufC((float *)C.get_data(), range<2>(M, N));
56+
57+
queue q;
58+
q.submit([&](handler &cgh) {
59+
auto accC = bufC.get_access<access::mode::read_write>(cgh);
60+
auto accA = bufA.get_access<access::mode::read_write>(cgh);
61+
auto accB = bufB.get_access<access::mode::read_write>(cgh);
62+
63+
cgh.parallel_for<class imatrix>(
64+
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}),
65+
[accA, accB, accC, M, N, K](nd_item<2> spmd_item)
66+
[[intel::reqd_sub_group_size(SG_SZ)]]
67+
68+
{
69+
// The submatrix API has to be accessed by all the workitems in a
70+
// subgroup these functions will be called once by the subgroup no
71+
// code divergence between the workitems
72+
const auto global_idx = spmd_item.get_global_id(0);
73+
const auto global_idy = spmd_item.get_global_id(1);
74+
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
75+
const auto sg_starty = global_idy - spmd_item.get_local_id(1);
76+
77+
sub_group sg = spmd_item.get_sub_group();
78+
joint_matrix<unsigned short, TM, TK> sub_a(sg);
79+
// For B, since current implementation does not support non-packed
80+
// layout, users need to specify the packed_b layout.
81+
// By default, the layout is row_major
82+
joint_matrix<unsigned short, TK, TN, matrix_layout::packed_b> sub_b(
83+
sg);
84+
joint_matrix<float, TM, TN> sub_c(sg);
85+
joint_matrix_load(sg, sub_c,
86+
accC.get_pointer() + (sg_startx * TM) * N +
87+
sg_starty / SG_SZ * TN,
88+
N, matrix_layout::row_major);
89+
for (int k = 0; k < K; k += TK) {
90+
joint_matrix_load(sg, sub_a,
91+
accA.get_pointer() + (sg_startx * TM) * K + k, K,
92+
matrix_layout::row_major);
93+
// Assume we alreay in vnni format.
94+
joint_matrix_load(sg, sub_b,
95+
accB.get_pointer() + (k) * (N) +
96+
sg_starty / SG_SZ * TN * 2,
97+
N * 2, matrix_layout::packed_b);
98+
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
99+
}
100+
auto wi_slice_c = sub_c.get_wi_data();
101+
for (int i = 0; i < wi_slice_c.length(); i++) {
102+
wi_slice_c[i] += 5.0;
103+
}
104+
joint_matrix_store(sg, sub_c,
105+
accC.get_pointer() + (sg_startx * TM) * N +
106+
sg_starty / SG_SZ * TN,
107+
N, matrix_layout::row_major);
108+
}); // parallel for
109+
}).wait();
110+
}
111+
112+
static constexpr size_t MATRIX_M = TM * 2;
113+
static constexpr size_t MATRIX_N = TN * 2;
114+
static constexpr size_t MATRIX_K = TK * 2;
115+
unsigned short A[MATRIX_M][MATRIX_K];
116+
unsigned short B[MATRIX_K / 2][MATRIX_N * 2];
117+
float C[MATRIX_M][MATRIX_N];
118+
float D[MATRIX_M][MATRIX_N];
119+
120+
float make_fp32(short x) {
121+
unsigned int y = x;
122+
y = y << 16;
123+
float *res = reinterpret_cast<float *>(&y);
124+
return *res;
125+
}
126+
127+
unsigned short make_bf16(float x) {
128+
int *res = reinterpret_cast<int *>(&x);
129+
*res = *res >> 16;
130+
return (unsigned short)*res;
131+
}
132+
133+
void matrix_multiply_ref(int *A_mem, int *B_mem, int *C_mem, int M, int N,
134+
int K) {
135+
// tiling
136+
for (int m = 0; m < M; m++)
137+
for (int n = 0; n < N; n++) {
138+
for (int k = 0; k < K; k++) {
139+
short *va = (short *)(A_mem + m * K + k);
140+
short *vb = (short *)(B_mem + k * N + n);
141+
float acc = *((float *)(C_mem + m * N + n));
142+
// FIXME: Should we do reduce-add in another version?
143+
for (int i = 0; i < 2; i++) {
144+
acc += (make_fp32(va[i]) * make_fp32(vb[i]));
145+
}
146+
*((float *)(C_mem + m * N + n)) = acc;
147+
}
148+
*((float *)(C_mem + m * N + n)) += 5.0;
149+
}
150+
}
151+
152+
int main() {
153+
for (int i = 0; i < MATRIX_M; i++) {
154+
for (int j = 0; j < MATRIX_K; j++) {
155+
A[i][j] = make_bf16(1.0f * (i + j));
156+
}
157+
}
158+
for (int i = 0; i < MATRIX_K / 2; i++) {
159+
for (int j = 0; j < MATRIX_N * 2; j++) {
160+
B[i][j] = make_bf16(2.0f * i + 3.0f * j);
161+
}
162+
}
163+
for (int i = 0; i < MATRIX_M; i++) {
164+
for (int j = 0; j < MATRIX_N; j++) {
165+
C[i][j] = 1.0;
166+
D[i][j] = 1.0;
167+
}
168+
}
169+
170+
big_matrix<float, MATRIX_M, MATRIX_N> MC((float *)&C);
171+
big_matrix<float, MATRIX_M, MATRIX_N> MD((float *)&D);
172+
big_matrix<unsigned short, MATRIX_M, MATRIX_K> MA((unsigned short *)&A);
173+
big_matrix<unsigned short, MATRIX_K / 2, MATRIX_N * 2> MB(
174+
(unsigned short *)&B);
175+
matrix_multiply(MC, MA, MB);
176+
matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M,
177+
MATRIX_N, MATRIX_K / 2);
178+
179+
bool res = true;
180+
for (int i = 0; i < MATRIX_M; i++) {
181+
for (int j = 0; j < MATRIX_N; j++) {
182+
if (C[i][j] != D[i][j])
183+
res = false;
184+
}
185+
}
186+
if (res)
187+
std::cout << "passed\n";
188+
else
189+
std::cout << "failed\n";
190+
}

0 commit comments

Comments
 (0)