|
| 1 | +//==----------------- xmx/dpas.hpp - DPC++ Explicit SIMD API ---------------==// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | +// Explicit SIMD API for DPAS Intel Xe Matrix eXtension. |
| 9 | +//===----------------------------------------------------------------------===// |
| 10 | + |
| 11 | +#pragma once |
| 12 | + |
| 13 | +#include <sycl/detail/defines_elementary.hpp> |
| 14 | +#include <sycl/ext/intel/esimd/detail/types.hpp> |
| 15 | +#include <sycl/ext/intel/esimd/xmx/common.hpp> |
| 16 | +#include <sycl/ext/intel/experimental/esimd/detail/math_intrin.hpp> |
| 17 | +#include <sycl/ext/oneapi/experimental/bfloat16.hpp> |
| 18 | + |
| 19 | +namespace sycl { |
| 20 | +__SYCL_INLINE_VER_NAMESPACE(_V1) { |
| 21 | + |
| 22 | +namespace ext::intel::esimd::xmx { |
| 23 | + |
| 24 | +namespace detail { |
| 25 | + |
| 26 | +template <typename T> constexpr dpas_argument_type dpas_precision_from_type() { |
| 27 | + // TODO: add support for tfloat32 here. |
| 28 | + if constexpr (std::is_same_v<T, sycl::half>) |
| 29 | + return dpas_argument_type::FP16; |
| 30 | + else if constexpr (std::is_same_v<T, |
| 31 | + sycl::ext::oneapi::experimental::bfloat16>) |
| 32 | + return dpas_argument_type::BF16; |
| 33 | + else if constexpr (std::is_same_v<T, unsigned char>) |
| 34 | + return dpas_argument_type::U8; |
| 35 | + else if constexpr (__ESIMD_DNS::is_type<T, char, signed char>()) |
| 36 | + return dpas_argument_type::S8; |
| 37 | + else |
| 38 | + return dpas_argument_type::Invalid; |
| 39 | +} |
| 40 | + |
| 41 | +template <dpas_argument_type T> constexpr int dpas_bitsize_from_precision() { |
| 42 | + if constexpr (T == dpas_argument_type::U2 || T == dpas_argument_type::S2) |
| 43 | + return 2; |
| 44 | + else if constexpr (T == dpas_argument_type::U4 || T == dpas_argument_type::S4) |
| 45 | + return 4; |
| 46 | + else if constexpr (T == dpas_argument_type::U8 || T == dpas_argument_type::S8) |
| 47 | + return 8; |
| 48 | + else if constexpr (T == dpas_argument_type::BF16 || |
| 49 | + T == dpas_argument_type::FP16) |
| 50 | + return 16; |
| 51 | + else if constexpr (T == dpas_argument_type::TF32) |
| 52 | + return 32; |
| 53 | + else |
| 54 | + return -1; |
| 55 | +} |
| 56 | + |
| 57 | +template <int RepeatCount, int AElemBitSize, int BElemBitSize, bool IsDPASW> |
| 58 | +constexpr void verify_repeat_count() { |
| 59 | + static_assert(RepeatCount >= 1 && RepeatCount <= 8, |
| 60 | + "Repeat count must be within 1 to 8 range"); |
| 61 | + |
| 62 | + if constexpr (IsDPASW && RepeatCount != 8) { |
| 63 | + static_assert(!(AElemBitSize == 2 && BElemBitSize > 4), |
| 64 | + "Unsupported repeat count for DPASW operation"); |
| 65 | + |
| 66 | + static_assert( |
| 67 | + RepeatCount == 4 || |
| 68 | + (AElemBitSize != 2 && (AElemBitSize != 4 || BElemBitSize <= 4)), |
| 69 | + "Unsupported repeat count for DPASW operation"); |
| 70 | + } |
| 71 | +} |
| 72 | + |
| 73 | +template <int SystolicDepth, int RepeatCount, typename T, typename CT, |
| 74 | + typename BT, typename AT, dpas_argument_type BPrecision, |
| 75 | + dpas_argument_type APrecision, int BN, int AN, bool IsDPASW = false> |
| 76 | +constexpr int verify_parameters_and_deduce_exec_size() { |
| 77 | + |
| 78 | + static_assert(SystolicDepth == 8, "Systolic depth must be equal to 8"); |
| 79 | + static_assert( |
| 80 | + APrecision != dpas_argument_type::Invalid && |
| 81 | + BPrecision != dpas_argument_type::Invalid, |
| 82 | + "The types of dpas arguments are either incorrect or cannot be deduced." |
| 83 | + "Fix the types and/or explicitly specify them."); |
| 84 | + |
| 85 | + constexpr int AElemBitSize = dpas_bitsize_from_precision<APrecision>(); |
| 86 | + constexpr int BElemBitSize = dpas_bitsize_from_precision<BPrecision>(); |
| 87 | + static_assert(AElemBitSize != -1 && BElemBitSize != -1, |
| 88 | + "Cannot deduce element size of input arguments"); |
| 89 | + verify_repeat_count<RepeatCount, AElemBitSize, BElemBitSize, IsDPASW>(); |
| 90 | + |
| 91 | + constexpr int OpsPerChannel = |
| 92 | + std::min(32 / std::max(AElemBitSize, BElemBitSize), 8); |
| 93 | + |
| 94 | + // A(_Mx_K) * B(_Kx_N) + C(_Mx_N) |
| 95 | + // where: |
| 96 | + // _M = RepeatCount; |
| 97 | + // _K = SystolicDepth * OpsPerChannel; |
| 98 | + // _N = ExecutionSize (unknown, but deducible), must be 8 or 16. |
| 99 | + constexpr int _M = RepeatCount; |
| 100 | + constexpr int _K = SystolicDepth * OpsPerChannel; |
| 101 | + |
| 102 | + // Compute _N (aka ExecutionSize) from the matrix B. |
| 103 | + // It has _K*_N elements of BPrecision type, and BN elements of BT type |
| 104 | + // hold those _K*_N*BPrecision bits, which let's us compute _N. |
| 105 | + constexpr int BMatrixBitSize = sizeof(BT) * BN * 8; |
| 106 | + constexpr int BNumElems = BMatrixBitSize / BElemBitSize; |
| 107 | + constexpr int _N = BNumElems / _K; |
| 108 | + static_assert(_K * _N == BNumElems, "Cannot deduce the execution size."); |
| 109 | + |
| 110 | + // Now verify that AN elements of AT type hold exactly _M*_K elements |
| 111 | + // of APrecision type/size. Similarly for B: BN elements of BT type must |
| 112 | + // hold _K*_N elements of BPrecision type/size. |
| 113 | + // DPASW accepts 2x less expected AN elements than regular DPAS. |
| 114 | + constexpr int AFactorForDPASW = IsDPASW ? 2 : 1; |
| 115 | + static_assert(_M * _K * AElemBitSize == AN * sizeof(AT) * 8 * AFactorForDPASW, |
| 116 | + "The first matrix multiplier has wrong size."); |
| 117 | + static_assert(_K * _N * BElemBitSize == BN * sizeof(BT) * 8, |
| 118 | + "The second matrix multiplier has wrong size."); |
| 119 | + |
| 120 | + // Execution size may be 8 or 16 depending on the target device. |
| 121 | + // User must check if used execution size is supported before calling DPAS. |
| 122 | + constexpr int ExecutionSize = _N; |
| 123 | + |
| 124 | + static_assert(ExecutionSize == 8 || (!IsDPASW && ExecutionSize == 16), |
| 125 | + "Execution size must be 8 or 16 for DPAS and 8 for DPASW."); |
| 126 | + |
| 127 | + if constexpr (APrecision == dpas_argument_type::FP16 || |
| 128 | + BPrecision == dpas_argument_type::FP16) { |
| 129 | + if constexpr (ExecutionSize == 8) { |
| 130 | + static_assert(APrecision == BPrecision && |
| 131 | + __ESIMD_DNS::is_type<T, float>() && |
| 132 | + __ESIMD_DNS::is_type<CT, float>(), |
| 133 | + "Unsupported DPAS types! The supported types are:\n" |
| 134 | + " Result | C | B | A \n" |
| 135 | + " f | f | hf | hf \n"); |
| 136 | + } else { |
| 137 | + static_assert(APrecision == BPrecision && |
| 138 | + __ESIMD_DNS::is_type<T, float, sycl::half>() && |
| 139 | + __ESIMD_DNS::is_type<CT, float, sycl::half>(), |
| 140 | + "Unsupported DPAS types! The supported types are:\n" |
| 141 | + " Result | C | B | A \n" |
| 142 | + " f, hf | f, hf | hf | hf \n"); |
| 143 | + } |
| 144 | + } else if constexpr (APrecision == dpas_argument_type::BF16 || |
| 145 | + BPrecision == dpas_argument_type::BF16) { |
| 146 | + using bfloat16 = sycl::ext::oneapi::experimental::bfloat16; |
| 147 | + if constexpr (ExecutionSize == 8) { |
| 148 | + static_assert(APrecision == BPrecision && |
| 149 | + __ESIMD_DNS::is_type<T, float, bfloat16>() && |
| 150 | + __ESIMD_DNS::is_type<CT, float, bfloat16>(), |
| 151 | + "Unsupported DPAS types! The supported types are:\n" |
| 152 | + " Result | C | B | A \n" |
| 153 | + " f | f | bf | bf \n"); |
| 154 | + } else { |
| 155 | + static_assert(APrecision == BPrecision && |
| 156 | + __ESIMD_DNS::is_type<T, float, bfloat16>() && |
| 157 | + __ESIMD_DNS::is_type<CT, float, bfloat16>(), |
| 158 | + "Unsupported DPAS types! The supported types are:\n" |
| 159 | + " Result | C | B | A \n" |
| 160 | + " f, bf | f, bf | bf | bf \n"); |
| 161 | + } |
| 162 | + } else if constexpr (APrecision == dpas_argument_type::TF32 || |
| 163 | + BPrecision == dpas_argument_type::TF32) { |
| 164 | + static_assert(ExecutionSize == 16, |
| 165 | + "tf32 type can be used only with ExecutionSize=16"); |
| 166 | + static_assert(APrecision == BPrecision && std::is_same_v<T, float> && |
| 167 | + std::is_same_v<CT, float>, |
| 168 | + "Unsupported DPAS types! The supported types are:\n" |
| 169 | + " Result | C | B | A \n" |
| 170 | + " f | f | tf32 | tf32 \n"); |
| 171 | + } else { |
| 172 | + static_assert((APrecision == dpas_argument_type::U2 || |
| 173 | + APrecision == dpas_argument_type::S2 || |
| 174 | + APrecision == dpas_argument_type::U4 || |
| 175 | + APrecision == dpas_argument_type::S4 || |
| 176 | + APrecision == dpas_argument_type::U8 || |
| 177 | + APrecision == dpas_argument_type::S8) && |
| 178 | + (BPrecision == dpas_argument_type::U2 || |
| 179 | + BPrecision == dpas_argument_type::S2 || |
| 180 | + BPrecision == dpas_argument_type::U4 || |
| 181 | + BPrecision == dpas_argument_type::S4 || |
| 182 | + BPrecision == dpas_argument_type::U8 || |
| 183 | + BPrecision == dpas_argument_type::S8), |
| 184 | + "Unsupported DPAS types! The supported types are:\n" |
| 185 | + " Result | C | B | A \n" |
| 186 | + " ud, d | ud, d | ub,b,u4,s4,u2,s2 | ub,b,u4,s4,u2,s2 \n"); |
| 187 | + } |
| 188 | + return ExecutionSize; |
| 189 | +} |
| 190 | + |
| 191 | +} // namespace detail |
| 192 | + |
| 193 | +/// @defgroup sycl_esimd_xmx_systolic_array_api Systolic Array APIs. |
| 194 | +/// APIs below are used to implement dot product accumulate systolic functions |
| 195 | +/// @ingroup sycl_esimd |
| 196 | + |
| 197 | +/// @addtogroup sycl_esimd_xmx_systolic_array_api |
| 198 | +/// @{ |
| 199 | +/// DPAS (Dot Product Accumulate Systolic) |
| 200 | +/// Computes the result of matrix operations: Result = C + A x B; |
| 201 | +/// @param C represents DPAS accumulator operand. |
| 202 | +/// @param B represents the 2nd matrix multiplier. It must have the VNNI encoded |
| 203 | +/// layout. |
| 204 | +/// @param A represents the 1st matrix multiplier. |
| 205 | +/// @return the vector value of DPAS computation result. |
| 206 | +template < |
| 207 | + int SystolicDepth, int RepeatCount, typename T, typename CT, typename BT, |
| 208 | + typename AT, |
| 209 | + dpas_argument_type BPrecision = detail::dpas_precision_from_type<BT>(), |
| 210 | + dpas_argument_type APrecision = detail::dpas_precision_from_type<AT>(), |
| 211 | + int N, int BN, int AN> |
| 212 | +__ESIMD_NS::simd<T, N> dpas(__ESIMD_NS::simd<CT, N> C, |
| 213 | + __ESIMD_NS::simd<BT, BN> B, |
| 214 | + __ESIMD_NS::simd<AT, AN> A) { |
| 215 | + (void)detail::verify_parameters_and_deduce_exec_size< |
| 216 | + SystolicDepth, RepeatCount, T, CT, BT, AT, BPrecision, APrecision, BN, |
| 217 | + AN>(); |
| 218 | + |
| 219 | + constexpr int ANCasted = AN / (sizeof(int) / sizeof(AT)); |
| 220 | + constexpr int BNCasted = BN / (sizeof(int) / sizeof(BT)); |
| 221 | + __ESIMD_NS::simd<int, ANCasted> ACasted = A.template bit_cast_view<int>(); |
| 222 | + __ESIMD_NS::simd<int, BNCasted> BCasted = B.template bit_cast_view<int>(); |
| 223 | + using CRawT = typename __ESIMD_NS::simd<CT, N>::raw_element_type; |
| 224 | + return __esimd_dpas2<BPrecision, APrecision, SystolicDepth, RepeatCount, T, |
| 225 | + CRawT, int, int, N, BNCasted, ANCasted>( |
| 226 | + C.data(), BCasted.data(), ACasted.data()); |
| 227 | +} |
| 228 | + |
| 229 | +/// DPAS (Dot Product Accumulate Systolic) |
| 230 | +/// Computes the result of matrix operations: Result = A x B; |
| 231 | +/// @param B represents the 2nd matrix multiplier. It must have the VNNI encoded |
| 232 | +/// layout. |
| 233 | +/// @param A represents the 1st matrix multiplier. |
| 234 | +/// @return the vector value of DPAS computation result. |
| 235 | +template < |
| 236 | + int SystolicDepth, int RepeatCount, typename T, typename BT, typename AT, |
| 237 | + dpas_argument_type BPrecision = detail::dpas_precision_from_type<BT>(), |
| 238 | + dpas_argument_type APrecision = detail::dpas_precision_from_type<AT>(), |
| 239 | + int BN, int AN> |
| 240 | +auto dpas(__ESIMD_NS::simd<BT, BN> B, __ESIMD_NS::simd<AT, AN> A) { |
| 241 | + |
| 242 | + constexpr int ExecutionSize = |
| 243 | + detail::verify_parameters_and_deduce_exec_size<SystolicDepth, RepeatCount, |
| 244 | + T, T, BT, AT, BPrecision, |
| 245 | + APrecision, BN, AN>(); |
| 246 | + // Result(_Mx_N) = A(_Mx_K) * B(_Kx_N) |
| 247 | + // where: |
| 248 | + // _M = RepeatCount; |
| 249 | + // _K = SystolicDepth * OpsPerChannel; |
| 250 | + // _N = ExecutionSize (unknown, but deducible), must be 8 or 16. |
| 251 | + constexpr int ResultN = RepeatCount * ExecutionSize; |
| 252 | + |
| 253 | + constexpr int ANCasted = AN / (sizeof(int) / sizeof(AT)); |
| 254 | + constexpr int BNCasted = BN / (sizeof(int) / sizeof(BT)); |
| 255 | + __ESIMD_NS::simd<int, ANCasted> ACasted = A.template bit_cast_view<int>(); |
| 256 | + __ESIMD_NS::simd<int, BNCasted> BCasted = B.template bit_cast_view<int>(); |
| 257 | + |
| 258 | + constexpr int Info = (RepeatCount << 24) + (SystolicDepth << 16) + |
| 259 | + ((int)APrecision << 8) + (int)BPrecision; |
| 260 | + __ESIMD_NS::simd<T, ResultN> Result = |
| 261 | + __esimd_dpas_nosrc0<Info, T, int, int, ResultN, BNCasted, ANCasted>( |
| 262 | + BCasted.data(), ACasted.data()); |
| 263 | + return Result; |
| 264 | +} |
| 265 | + |
| 266 | +/// DPAS (Dot Product Accumulate Systolic) |
| 267 | +/// Computes the result of matrix operations: Result = C + A x B; |
| 268 | +/// @param C represents DPAS accumulator operand. |
| 269 | +/// @param B represents the 2nd matrix multiplier. It must have the VNNI encoded |
| 270 | +/// layout. |
| 271 | +/// @param A represents the 1st matrix multiplier. |
| 272 | +/// @return the vector value of DPAS computation result. |
| 273 | +template < |
| 274 | + int SystolicDepth, int RepeatCount, typename T, typename BT, typename AT, |
| 275 | + dpas_argument_type BPrecision = detail::dpas_precision_from_type<BT>(), |
| 276 | + dpas_argument_type APrecision = detail::dpas_precision_from_type<AT>(), |
| 277 | + int N, int BN, int AN> |
| 278 | +__ESIMD_NS::simd<T, N> dpasw(__ESIMD_NS::simd<T, N> C, |
| 279 | + __ESIMD_NS::simd<BT, BN> B, |
| 280 | + __ESIMD_NS::simd<AT, AN> A) { |
| 281 | + |
| 282 | + constexpr bool IsDPASW = true; |
| 283 | + (void)detail::verify_parameters_and_deduce_exec_size< |
| 284 | + SystolicDepth, RepeatCount, T, T, BT, AT, BPrecision, APrecision, BN, AN, |
| 285 | + IsDPASW>(); |
| 286 | + |
| 287 | + constexpr int ANCasted = AN / (sizeof(int) / sizeof(AT)); |
| 288 | + constexpr int BNCasted = BN / (sizeof(int) / sizeof(BT)); |
| 289 | + __ESIMD_NS::simd<int, ANCasted> ACasted = A.template bit_cast_view<int>(); |
| 290 | + __ESIMD_NS::simd<int, BNCasted> BCasted = B.template bit_cast_view<int>(); |
| 291 | + |
| 292 | + constexpr int Info = (RepeatCount << 24) + (SystolicDepth << 16) + |
| 293 | + ((int)APrecision << 8) + (int)BPrecision; |
| 294 | + return __esimd_dpasw<Info, T, int, int, N, BNCasted, ANCasted>( |
| 295 | + C.data(), BCasted.data(), ACasted.data()); |
| 296 | +} |
| 297 | + |
| 298 | +/// DPAS (Dot Product Accumulate Systolic) |
| 299 | +/// Computes the result of matrix operations: Result = A x B; |
| 300 | +/// @param B represents the 2nd matrix multiplier. It must have the VNNI encoded |
| 301 | +/// layout. |
| 302 | +/// @param A represents the 1st matrix multiplier. |
| 303 | +/// @return the vector value of DPAS computation result. |
| 304 | +template < |
| 305 | + int SystolicDepth, int RepeatCount, typename T, typename BT, typename AT, |
| 306 | + dpas_argument_type BPrecision = detail::dpas_precision_from_type<BT>(), |
| 307 | + dpas_argument_type APrecision = detail::dpas_precision_from_type<AT>(), |
| 308 | + int BN, int AN> |
| 309 | +auto dpasw(__ESIMD_NS::simd<BT, BN> B, __ESIMD_NS::simd<AT, AN> A) { |
| 310 | + |
| 311 | + constexpr bool IsDPASW = true; |
| 312 | + constexpr int ExecutionSize = detail::verify_parameters_and_deduce_exec_size< |
| 313 | + SystolicDepth, RepeatCount, T, T, BT, AT, BPrecision, APrecision, BN, AN, |
| 314 | + IsDPASW>(); |
| 315 | + |
| 316 | + // Result(_Mx_N) = A(_Mx_K) * B(_Kx_N) |
| 317 | + // where: |
| 318 | + // _M = RepeatCount; |
| 319 | + // _K = SystolicDepth * OpsPerChannel; |
| 320 | + // _N = ExecutionSize (unknown, but deducible), must be 8 or 16. |
| 321 | + constexpr int ResultN = RepeatCount * ExecutionSize; |
| 322 | + |
| 323 | + constexpr int ANCasted = AN / (sizeof(int) / sizeof(AT)); |
| 324 | + constexpr int BNCasted = BN / (sizeof(int) / sizeof(BT)); |
| 325 | + __ESIMD_NS::simd<int, ANCasted> ACasted = A.template bit_cast_view<int>(); |
| 326 | + __ESIMD_NS::simd<int, BNCasted> BCasted = B.template bit_cast_view<int>(); |
| 327 | + |
| 328 | + constexpr int Info = (RepeatCount << 24) + (SystolicDepth << 16) + |
| 329 | + ((int)APrecision << 8) + (int)BPrecision; |
| 330 | + __ESIMD_NS::simd<T, ResultN> Result = |
| 331 | + __esimd_dpasw_nosrc0<Info, T, int, int, ResultN, BNCasted, ANCasted>( |
| 332 | + BCasted.data(), ACasted.data()); |
| 333 | + return Result; |
| 334 | +} |
| 335 | + |
| 336 | +/// @} sycl_esimd_xmx_systolic_array_api |
| 337 | + |
| 338 | +} // namespace ext::intel::esimd::xmx |
| 339 | +} // __SYCL_INLINE_VER_NAMESPACE(_V1) |
| 340 | +} // namespace sycl |
0 commit comments