Skip to content

Commit 8cacabe

Browse files
committed
[mlir] Add an integration test for masked vectorisation for linalg.matmul
Differential Revision: https://reviews.llvm.org/D156823
1 parent d5c2204 commit 8cacabe

File tree

1 file changed

+58
-0
lines changed

1 file changed

+58
-0
lines changed
Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule -one-shot-bufferize -func-bufferize -lower-vector-mask --test-lower-to-llvm | \
2+
// RUN: mlir-cpu-runner -e main -entry-point-result=void --shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
3+
// RUN: FileCheck %s
4+
5+
func.func private @printMemrefF32(%ptr : tensor<*xf32>)
6+
7+
func.func @main() {
8+
%c4 = arith.constant 4 : index
9+
%c8 = arith.constant 8 : index
10+
11+
%A = arith.constant dense<[
12+
[ 1.1, 2.1 ],
13+
[ 1.2, 2.2 ],
14+
[ 1.3, 2.3 ],
15+
[ 1.4, 2.4 ],
16+
[ 1.5, 2.5 ],
17+
[ 1.6, 2.6 ],
18+
[ 1.7, 2.7 ],
19+
[ 1.8, 2.8 ]
20+
]> : tensor<8x2xf32>
21+
%B = arith.constant dense<[
22+
[ 10.1, 11.1, 12.1, 13.1 ],
23+
[ 10.2, 11.2, 12.2, 13.2 ]
24+
]> : tensor<2x4xf32>
25+
%C_dyn = bufferization.alloc_tensor(%c8, %c4) : tensor<?x?xf32>
26+
27+
%A_dyn = tensor.cast %A : tensor<8x2xf32> to tensor<?x?xf32>
28+
%B_dyn = tensor.cast %B : tensor<2x4xf32> to tensor<?x?xf32>
29+
30+
%c0_i32 = arith.constant 0 : i32
31+
%C_init = linalg.fill ins(%c0_i32 : i32) outs(%C_dyn : tensor<?x?xf32>) -> tensor<?x?xf32>
32+
33+
%res = linalg.matmul ins(%A_dyn, %B_dyn: tensor<?x?xf32>, tensor<?x?xf32>)
34+
outs(%C_init: tensor<?x?xf32>) -> tensor<?x?xf32>
35+
%xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
36+
37+
// CHECK: {{\[}}[32.53, 35.73, 38.93, 42.13],
38+
// CHECK-NEXT: [34.56, 37.96, 41.36, 44.76],
39+
// CHECK-NEXT: [36.59, 40.19, 43.79, 47.39],
40+
// CHECK-NEXT: [38.62, 42.42, 46.22, 50.02],
41+
// CHECK-NEXT: [0, 0, 0, 0],
42+
// CHECK-NEXT: [0, 0, 0, 0],
43+
// CHECK-NEXT: [0, 0, 0, 0],
44+
// CHECK-NEXT: [0, 0, 0, 0]]
45+
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
46+
47+
return
48+
}
49+
50+
transform.sequence failures(propagate) {
51+
^bb1(%arg1: !transform.any_op):
52+
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
53+
%func_op = get_parent_op %0 : (!transform.any_op) -> !transform.op<"func.func">
54+
transform.structured.masked_vectorize %0 vector_sizes [4, 4, 2] : !transform.any_op
55+
transform.apply_patterns to %func_op {
56+
transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerreduction"
57+
} : !transform.op<"func.func">
58+
}

0 commit comments

Comments
 (0)