|
| 1 | +use coresimd::simd::*; |
| 2 | +use coresimd::x86::*; |
| 3 | +use mem; |
| 4 | + |
| 5 | +#[allow(improper_ctypes)] |
| 6 | +extern "C" { |
| 7 | + #[link_name = "llvm.x86.sha1msg1"] |
| 8 | + fn sha1msg1(a: i32x4, b: i32x4) -> i32x4; |
| 9 | + #[link_name = "llvm.x86.sha1msg2"] |
| 10 | + fn sha1msg2(a: i32x4, b: i32x4) -> i32x4; |
| 11 | + #[link_name = "llvm.x86.sha1nexte"] |
| 12 | + fn sha1nexte(a: i32x4, b: i32x4) -> i32x4; |
| 13 | + #[link_name = "llvm.x86.sha1rnds4"] |
| 14 | + fn sha1rnds4(a: i32x4, b: i32x4, c: i8) -> i32x4; |
| 15 | + #[link_name = "llvm.x86.sha256msg1"] |
| 16 | + fn sha256msg1(a: i32x4, b: i32x4) -> i32x4; |
| 17 | + #[link_name = "llvm.x86.sha256msg2"] |
| 18 | + fn sha256msg2(a: i32x4, b: i32x4) -> i32x4; |
| 19 | + #[link_name = "llvm.x86.sha256rnds2"] |
| 20 | + fn sha256rnds2(a: i32x4, b: i32x4, k: i32x4) -> i32x4; |
| 21 | +} |
| 22 | + |
| 23 | +#[cfg(test)] |
| 24 | +use stdsimd_test::assert_instr; |
| 25 | + |
| 26 | +/// Perform an intermediate calculation for the next four SHA1 message values |
| 27 | +/// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 28 | +/// and returning the result. |
| 29 | +#[inline] |
| 30 | +#[target_feature(enable = "sha")] |
| 31 | +#[cfg_attr(test, assert_instr(sha1msg1))] |
| 32 | +pub unsafe fn _mm_sha1msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 33 | + mem::transmute(sha1msg1(a.as_i32x4(), b.as_i32x4())) |
| 34 | +} |
| 35 | + |
| 36 | +/// Perform the final calculation for the next four SHA1 message values |
| 37 | +/// (unsigned 32-bit integers) using the intermediate result in `a` and the |
| 38 | +/// previous message values in `b`, and returns the result. |
| 39 | +#[inline] |
| 40 | +#[target_feature(enable = "sha")] |
| 41 | +#[cfg_attr(test, assert_instr(sha1msg2))] |
| 42 | +pub unsafe fn _mm_sha1msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 43 | + mem::transmute(sha1msg2(a.as_i32x4(), b.as_i32x4())) |
| 44 | +} |
| 45 | + |
| 46 | +/// Calculate SHA1 state variable E after four rounds of operation from the |
| 47 | +/// current SHA1 state variable `a`, add that value to the scheduled values |
| 48 | +/// (unsigned 32-bit integers) in `b`, and returns the result. |
| 49 | +#[inline] |
| 50 | +#[target_feature(enable = "sha")] |
| 51 | +#[cfg_attr(test, assert_instr(sha1nexte))] |
| 52 | +pub unsafe fn _mm_sha1nexte_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 53 | + mem::transmute(sha1nexte(a.as_i32x4(), b.as_i32x4())) |
| 54 | +} |
| 55 | + |
| 56 | +/// Perform four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) |
| 57 | +/// from `a` and some pre-computed sum of the next 4 round message values |
| 58 | +/// (unsigned 32-bit integers), and state variable E from `b`, and return the |
| 59 | +/// updated SHA1 state (A,B,C,D). `func` contains the logic functions and round |
| 60 | +/// constants. |
| 61 | +#[inline] |
| 62 | +#[target_feature(enable = "sha")] |
| 63 | +#[cfg_attr(test, assert_instr(sha1rnds4, func = 0))] |
| 64 | +#[rustc_args_required_const(2)] |
| 65 | +pub unsafe fn _mm_sha1rnds4_epu32(a: __m128i, b: __m128i, func: i32) -> __m128i { |
| 66 | + let a = a.as_i32x4(); |
| 67 | + let b = b.as_i32x4(); |
| 68 | + macro_rules! call { |
| 69 | + ($imm2:expr) => { sha1rnds4(a, b, $imm2) } |
| 70 | + } |
| 71 | + let ret = constify_imm2!(func, call); |
| 72 | + mem::transmute(ret) |
| 73 | +} |
| 74 | + |
| 75 | +/// Perform an intermediate calculation for the next four SHA256 message values |
| 76 | +/// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 77 | +/// and return the result. |
| 78 | +#[inline] |
| 79 | +#[target_feature(enable = "sha")] |
| 80 | +#[cfg_attr(test, assert_instr(sha256msg1))] |
| 81 | +pub unsafe fn _mm_sha256msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 82 | + mem::transmute(sha256msg1(a.as_i32x4(), b.as_i32x4())) |
| 83 | +} |
| 84 | + |
| 85 | +/// Perform the final calculation for the next four SHA256 message values |
| 86 | +/// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 87 | +/// and return the result. |
| 88 | +#[inline] |
| 89 | +#[target_feature(enable = "sha")] |
| 90 | +#[cfg_attr(test, assert_instr(sha256msg2))] |
| 91 | +pub unsafe fn _mm_sha256msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 92 | + mem::transmute(sha256msg2(a.as_i32x4(), b.as_i32x4())) |
| 93 | +} |
| 94 | + |
| 95 | +/// Perform 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) |
| 96 | +/// from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a pre-computed sum |
| 97 | +/// of the next 2 round message values (unsigned 32-bit integers) and the |
| 98 | +/// corresponding round constants from `k`, and store the updated SHA256 state |
| 99 | +/// (A,B,E,F) in dst. |
| 100 | +#[inline] |
| 101 | +#[target_feature(enable = "sha")] |
| 102 | +#[cfg_attr(test, assert_instr(sha256rnds2))] |
| 103 | +pub unsafe fn _mm_sha256rnds2_epu32 (a: __m128i, b: __m128i, k: __m128i) -> __m128i { |
| 104 | + mem::transmute(sha256rnds2(a.as_i32x4(), b.as_i32x4(), k.as_i32x4())) |
| 105 | +} |
| 106 | + |
| 107 | +#[cfg(test)] |
| 108 | +mod tests { |
| 109 | + use std::mem::{self, transmute}; |
| 110 | + use std::f64::{self, NAN}; |
| 111 | + use std::f32; |
| 112 | + use std::i32; |
| 113 | + |
| 114 | + use stdsimd_test::simd_test; |
| 115 | + use test::black_box; // Used to inhibit constant-folding. |
| 116 | + use coresimd::x86::*; |
| 117 | + use coresimd::simd::*; |
| 118 | + |
| 119 | + #[simd_test = "sha"] |
| 120 | + #[allow(overflowing_literals)] |
| 121 | + unsafe fn test_mm_sha1msg1_epu32() { |
| 122 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 123 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 124 | + let expected = _mm_set_epi64x(0x98829f34f74ad457, 0xda2b1a44d0b5ad3c); |
| 125 | + let r = _mm_sha1msg1_epu32(a, b); |
| 126 | + assert_eq_m128i(r, expected); |
| 127 | + } |
| 128 | + |
| 129 | + #[simd_test = "sha"] |
| 130 | + #[allow(overflowing_literals)] |
| 131 | + unsafe fn test_mm_sha1msg2_epu32() { |
| 132 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 133 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 134 | + let expected = _mm_set_epi64x(0xf714b202d863d47d, 0x90c30d946b3d3b35); |
| 135 | + let r = _mm_sha1msg2_epu32(a, b); |
| 136 | + assert_eq_m128i(r, expected); |
| 137 | + } |
| 138 | + |
| 139 | + #[simd_test = "sha"] |
| 140 | + #[allow(overflowing_literals)] |
| 141 | + unsafe fn test_mm_sha1nexte_epu32() { |
| 142 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 143 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 144 | + let expected = _mm_set_epi64x(0x2589d5be923f82a4, 0x59f111f13956c25b); |
| 145 | + let r = _mm_sha1nexte_epu32(a, b); |
| 146 | + assert_eq_m128i(r, expected); |
| 147 | + } |
| 148 | + |
| 149 | + #[simd_test = "sha"] |
| 150 | + #[allow(overflowing_literals)] |
| 151 | + unsafe fn test_mm_sha1rnds4_epu32() { |
| 152 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 153 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 154 | + let expected = _mm_set_epi64x(0x32b13cd8322f5268, 0xc54420862bd9246f); |
| 155 | + let r = _mm_sha1rnds4_epu32(a, b, 0); |
| 156 | + assert_eq_m128i(r, expected); |
| 157 | + |
| 158 | + let expected = _mm_set_epi64x(0x6d4c43e56a3c25d9, 0xa7e00fb775cbd3fe); |
| 159 | + let r = _mm_sha1rnds4_epu32(a, b, 1); |
| 160 | + assert_eq_m128i(r, expected); |
| 161 | + |
| 162 | + let expected = _mm_set_epi64x(0xb304e383c01222f4, 0x66f6b3b1f89d8001); |
| 163 | + let r = _mm_sha1rnds4_epu32(a, b, 2); |
| 164 | + assert_eq_m128i(r, expected); |
| 165 | + |
| 166 | + let expected = _mm_set_epi64x(0x8189b758bfabfa79, 0xdb08f6e78cae098b); |
| 167 | + let r = _mm_sha1rnds4_epu32(a, b, 3); |
| 168 | + assert_eq_m128i(r, expected); |
| 169 | + } |
| 170 | + |
| 171 | + #[simd_test = "sha"] |
| 172 | + #[allow(overflowing_literals)] |
| 173 | + unsafe fn test_mm_sha256msg1_epu32() { |
| 174 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 175 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 176 | + let expected = _mm_set_epi64x(0xeb84973fd5cda67d, 0x2857b88f406b09ee); |
| 177 | + let r = _mm_sha256msg1_epu32(a, b); |
| 178 | + assert_eq_m128i(r, expected); |
| 179 | + } |
| 180 | + |
| 181 | + #[simd_test = "sha"] |
| 182 | + #[allow(overflowing_literals)] |
| 183 | + unsafe fn test_mm_sha256msg2_epu32() { |
| 184 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 185 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 186 | + let expected = _mm_set_epi64x(0xb58777ce887fd851, 0x15d1ec8b73ac8450); |
| 187 | + let r = _mm_sha256msg2_epu32(a, b); |
| 188 | + assert_eq_m128i(r, expected); |
| 189 | + } |
| 190 | + |
| 191 | + #[simd_test = "sha"] |
| 192 | + #[allow(overflowing_literals)] |
| 193 | + unsafe fn test_mm_sha256rnds2_epu32() { |
| 194 | + let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 195 | + let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 196 | + let k = _mm_set_epi64x(0, 0x12835b01d807aa98); |
| 197 | + let expected = _mm_set_epi64x(0xd3063037effb15ea, 0x187ee3db0d6d1d19); |
| 198 | + let r = _mm_sha256rnds2_epu32(a, b, k); |
| 199 | + assert_eq_m128i(r, expected); |
| 200 | + } |
| 201 | +} |
0 commit comments