|
| 1 | +# Copy from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py |
| 2 | +# LICENSE: https://github.com/huggingface/diffusers/blob/main/LICENSE |
| 3 | +# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. |
| 4 | +# *Only* converts the UNet, VAE, and Text Encoder. |
| 5 | +# Does not convert optimizer state or any other thing. |
| 6 | + |
| 7 | +import argparse |
| 8 | +import os.path as osp |
| 9 | +import re |
| 10 | + |
| 11 | +import torch |
| 12 | +from safetensors.torch import load_file, save_file |
| 13 | + |
| 14 | + |
| 15 | +# =================# |
| 16 | +# UNet Conversion # |
| 17 | +# =================# |
| 18 | + |
| 19 | +unet_conversion_map = [ |
| 20 | + # (stable-diffusion, HF Diffusers) |
| 21 | + ("time_embed.0.weight", "time_embedding.linear_1.weight"), |
| 22 | + ("time_embed.0.bias", "time_embedding.linear_1.bias"), |
| 23 | + ("time_embed.2.weight", "time_embedding.linear_2.weight"), |
| 24 | + ("time_embed.2.bias", "time_embedding.linear_2.bias"), |
| 25 | + ("input_blocks.0.0.weight", "conv_in.weight"), |
| 26 | + ("input_blocks.0.0.bias", "conv_in.bias"), |
| 27 | + ("out.0.weight", "conv_norm_out.weight"), |
| 28 | + ("out.0.bias", "conv_norm_out.bias"), |
| 29 | + ("out.2.weight", "conv_out.weight"), |
| 30 | + ("out.2.bias", "conv_out.bias"), |
| 31 | +] |
| 32 | + |
| 33 | +unet_conversion_map_resnet = [ |
| 34 | + # (stable-diffusion, HF Diffusers) |
| 35 | + ("in_layers.0", "norm1"), |
| 36 | + ("in_layers.2", "conv1"), |
| 37 | + ("out_layers.0", "norm2"), |
| 38 | + ("out_layers.3", "conv2"), |
| 39 | + ("emb_layers.1", "time_emb_proj"), |
| 40 | + ("skip_connection", "conv_shortcut"), |
| 41 | +] |
| 42 | + |
| 43 | +unet_conversion_map_layer = [] |
| 44 | +# hardcoded number of downblocks and resnets/attentions... |
| 45 | +# would need smarter logic for other networks. |
| 46 | +for i in range(4): |
| 47 | + # loop over downblocks/upblocks |
| 48 | + |
| 49 | + for j in range(2): |
| 50 | + # loop over resnets/attentions for downblocks |
| 51 | + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
| 52 | + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." |
| 53 | + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
| 54 | + |
| 55 | + if i < 3: |
| 56 | + # no attention layers in down_blocks.3 |
| 57 | + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
| 58 | + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." |
| 59 | + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
| 60 | + |
| 61 | + for j in range(3): |
| 62 | + # loop over resnets/attentions for upblocks |
| 63 | + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." |
| 64 | + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." |
| 65 | + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) |
| 66 | + |
| 67 | + if i > 0: |
| 68 | + # no attention layers in up_blocks.0 |
| 69 | + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." |
| 70 | + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." |
| 71 | + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) |
| 72 | + |
| 73 | + if i < 3: |
| 74 | + # no downsample in down_blocks.3 |
| 75 | + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
| 76 | + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." |
| 77 | + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
| 78 | + |
| 79 | + # no upsample in up_blocks.3 |
| 80 | + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
| 81 | + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." |
| 82 | + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) |
| 83 | + |
| 84 | +hf_mid_atn_prefix = "mid_block.attentions.0." |
| 85 | +sd_mid_atn_prefix = "middle_block.1." |
| 86 | +unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
| 87 | + |
| 88 | +for j in range(2): |
| 89 | + hf_mid_res_prefix = f"mid_block.resnets.{j}." |
| 90 | + sd_mid_res_prefix = f"middle_block.{2*j}." |
| 91 | + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
| 92 | + |
| 93 | + |
| 94 | +def convert_unet_state_dict(unet_state_dict): |
| 95 | + # buyer beware: this is a *brittle* function, |
| 96 | + # and correct output requires that all of these pieces interact in |
| 97 | + # the exact order in which I have arranged them. |
| 98 | + mapping = {k: k for k in unet_state_dict.keys()} |
| 99 | + for sd_name, hf_name in unet_conversion_map: |
| 100 | + mapping[hf_name] = sd_name |
| 101 | + for k, v in mapping.items(): |
| 102 | + if "resnets" in k: |
| 103 | + for sd_part, hf_part in unet_conversion_map_resnet: |
| 104 | + v = v.replace(hf_part, sd_part) |
| 105 | + mapping[k] = v |
| 106 | + for k, v in mapping.items(): |
| 107 | + for sd_part, hf_part in unet_conversion_map_layer: |
| 108 | + v = v.replace(hf_part, sd_part) |
| 109 | + mapping[k] = v |
| 110 | + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} |
| 111 | + return new_state_dict |
| 112 | + |
| 113 | + |
| 114 | +# ================# |
| 115 | +# VAE Conversion # |
| 116 | +# ================# |
| 117 | + |
| 118 | +vae_conversion_map = [ |
| 119 | + # (stable-diffusion, HF Diffusers) |
| 120 | + ("nin_shortcut", "conv_shortcut"), |
| 121 | + ("norm_out", "conv_norm_out"), |
| 122 | + ("mid.attn_1.", "mid_block.attentions.0."), |
| 123 | +] |
| 124 | + |
| 125 | +for i in range(4): |
| 126 | + # down_blocks have two resnets |
| 127 | + for j in range(2): |
| 128 | + hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." |
| 129 | + sd_down_prefix = f"encoder.down.{i}.block.{j}." |
| 130 | + vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) |
| 131 | + |
| 132 | + if i < 3: |
| 133 | + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." |
| 134 | + sd_downsample_prefix = f"down.{i}.downsample." |
| 135 | + vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) |
| 136 | + |
| 137 | + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
| 138 | + sd_upsample_prefix = f"up.{3-i}.upsample." |
| 139 | + vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) |
| 140 | + |
| 141 | + # up_blocks have three resnets |
| 142 | + # also, up blocks in hf are numbered in reverse from sd |
| 143 | + for j in range(3): |
| 144 | + hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." |
| 145 | + sd_up_prefix = f"decoder.up.{3-i}.block.{j}." |
| 146 | + vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) |
| 147 | + |
| 148 | +# this part accounts for mid blocks in both the encoder and the decoder |
| 149 | +for i in range(2): |
| 150 | + hf_mid_res_prefix = f"mid_block.resnets.{i}." |
| 151 | + sd_mid_res_prefix = f"mid.block_{i+1}." |
| 152 | + vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
| 153 | + |
| 154 | + |
| 155 | +vae_conversion_map_attn = [ |
| 156 | + # (stable-diffusion, HF Diffusers) |
| 157 | + ("norm.", "group_norm."), |
| 158 | + ("q.", "query."), |
| 159 | + ("k.", "key."), |
| 160 | + ("v.", "value."), |
| 161 | + ("proj_out.", "proj_attn."), |
| 162 | +] |
| 163 | + |
| 164 | + |
| 165 | +def reshape_weight_for_sd(w): |
| 166 | + # convert HF linear weights to SD conv2d weights |
| 167 | + return w.reshape(*w.shape, 1, 1) |
| 168 | + |
| 169 | + |
| 170 | +def convert_vae_state_dict(vae_state_dict): |
| 171 | + mapping = {k: k for k in vae_state_dict.keys()} |
| 172 | + for k, v in mapping.items(): |
| 173 | + for sd_part, hf_part in vae_conversion_map: |
| 174 | + v = v.replace(hf_part, sd_part) |
| 175 | + mapping[k] = v |
| 176 | + for k, v in mapping.items(): |
| 177 | + if "attentions" in k: |
| 178 | + for sd_part, hf_part in vae_conversion_map_attn: |
| 179 | + v = v.replace(hf_part, sd_part) |
| 180 | + mapping[k] = v |
| 181 | + new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} |
| 182 | + weights_to_convert = ["q", "k", "v", "proj_out"] |
| 183 | + for k, v in new_state_dict.items(): |
| 184 | + for weight_name in weights_to_convert: |
| 185 | + if f"mid.attn_1.{weight_name}.weight" in k: |
| 186 | + print(f"Reshaping {k} for SD format") |
| 187 | + new_state_dict[k] = reshape_weight_for_sd(v) |
| 188 | + return new_state_dict |
| 189 | + |
| 190 | + |
| 191 | +# =========================# |
| 192 | +# Text Encoder Conversion # |
| 193 | +# =========================# |
| 194 | + |
| 195 | + |
| 196 | +textenc_conversion_lst = [ |
| 197 | + # (stable-diffusion, HF Diffusers) |
| 198 | + ("resblocks.", "text_model.encoder.layers."), |
| 199 | + ("ln_1", "layer_norm1"), |
| 200 | + ("ln_2", "layer_norm2"), |
| 201 | + (".c_fc.", ".fc1."), |
| 202 | + (".c_proj.", ".fc2."), |
| 203 | + (".attn", ".self_attn"), |
| 204 | + ("ln_final.", "transformer.text_model.final_layer_norm."), |
| 205 | + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), |
| 206 | + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), |
| 207 | +] |
| 208 | +protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} |
| 209 | +textenc_pattern = re.compile("|".join(protected.keys())) |
| 210 | + |
| 211 | +# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp |
| 212 | +code2idx = {"q": 0, "k": 1, "v": 2} |
| 213 | + |
| 214 | + |
| 215 | +def convert_text_enc_state_dict_v20(text_enc_dict): |
| 216 | + new_state_dict = {} |
| 217 | + capture_qkv_weight = {} |
| 218 | + capture_qkv_bias = {} |
| 219 | + for k, v in text_enc_dict.items(): |
| 220 | + if ( |
| 221 | + k.endswith(".self_attn.q_proj.weight") |
| 222 | + or k.endswith(".self_attn.k_proj.weight") |
| 223 | + or k.endswith(".self_attn.v_proj.weight") |
| 224 | + ): |
| 225 | + k_pre = k[: -len(".q_proj.weight")] |
| 226 | + k_code = k[-len("q_proj.weight")] |
| 227 | + if k_pre not in capture_qkv_weight: |
| 228 | + capture_qkv_weight[k_pre] = [None, None, None] |
| 229 | + capture_qkv_weight[k_pre][code2idx[k_code]] = v |
| 230 | + continue |
| 231 | + |
| 232 | + if ( |
| 233 | + k.endswith(".self_attn.q_proj.bias") |
| 234 | + or k.endswith(".self_attn.k_proj.bias") |
| 235 | + or k.endswith(".self_attn.v_proj.bias") |
| 236 | + ): |
| 237 | + k_pre = k[: -len(".q_proj.bias")] |
| 238 | + k_code = k[-len("q_proj.bias")] |
| 239 | + if k_pre not in capture_qkv_bias: |
| 240 | + capture_qkv_bias[k_pre] = [None, None, None] |
| 241 | + capture_qkv_bias[k_pre][code2idx[k_code]] = v |
| 242 | + continue |
| 243 | + |
| 244 | + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) |
| 245 | + new_state_dict[relabelled_key] = v |
| 246 | + |
| 247 | + for k_pre, tensors in capture_qkv_weight.items(): |
| 248 | + if None in tensors: |
| 249 | + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
| 250 | + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
| 251 | + new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) |
| 252 | + |
| 253 | + for k_pre, tensors in capture_qkv_bias.items(): |
| 254 | + if None in tensors: |
| 255 | + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
| 256 | + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
| 257 | + new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) |
| 258 | + |
| 259 | + return new_state_dict |
| 260 | + |
| 261 | + |
| 262 | +def convert_text_enc_state_dict(text_enc_dict): |
| 263 | + return text_enc_dict |
| 264 | + |
| 265 | + |
| 266 | +if __name__ == "__main__": |
| 267 | + parser = argparse.ArgumentParser() |
| 268 | + |
| 269 | + parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") |
| 270 | + parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") |
| 271 | + parser.add_argument("--half", action="store_true", help="Save weights in half precision.") |
| 272 | + parser.add_argument( |
| 273 | + "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." |
| 274 | + ) |
| 275 | + |
| 276 | + args = parser.parse_args() |
| 277 | + |
| 278 | + assert args.model_path is not None, "Must provide a model path!" |
| 279 | + |
| 280 | + assert args.checkpoint_path is not None, "Must provide a checkpoint path!" |
| 281 | + |
| 282 | + # Path for safetensors |
| 283 | + unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") |
| 284 | + vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") |
| 285 | + text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors") |
| 286 | + |
| 287 | + # Load models from safetensors if it exists, if it doesn't pytorch |
| 288 | + if osp.exists(unet_path): |
| 289 | + unet_state_dict = load_file(unet_path, device="cpu") |
| 290 | + else: |
| 291 | + unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") |
| 292 | + unet_state_dict = torch.load(unet_path, map_location="cpu") |
| 293 | + |
| 294 | + if osp.exists(vae_path): |
| 295 | + vae_state_dict = load_file(vae_path, device="cpu") |
| 296 | + else: |
| 297 | + vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") |
| 298 | + vae_state_dict = torch.load(vae_path, map_location="cpu") |
| 299 | + |
| 300 | + if osp.exists(text_enc_path): |
| 301 | + text_enc_dict = load_file(text_enc_path, device="cpu") |
| 302 | + else: |
| 303 | + text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") |
| 304 | + text_enc_dict = torch.load(text_enc_path, map_location="cpu") |
| 305 | + |
| 306 | + # Convert the UNet model |
| 307 | + unet_state_dict = convert_unet_state_dict(unet_state_dict) |
| 308 | + unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} |
| 309 | + |
| 310 | + # Convert the VAE model |
| 311 | + vae_state_dict = convert_vae_state_dict(vae_state_dict) |
| 312 | + vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} |
| 313 | + |
| 314 | + # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper |
| 315 | + is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict |
| 316 | + |
| 317 | + if is_v20_model: |
| 318 | + # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm |
| 319 | + text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} |
| 320 | + text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) |
| 321 | + text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} |
| 322 | + else: |
| 323 | + text_enc_dict = convert_text_enc_state_dict(text_enc_dict) |
| 324 | + text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} |
| 325 | + |
| 326 | + # Put together new checkpoint |
| 327 | + state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} |
| 328 | + if args.half: |
| 329 | + state_dict = {k: v.half() for k, v in state_dict.items()} |
| 330 | + |
| 331 | + if args.use_safetensors: |
| 332 | + save_file(state_dict, args.checkpoint_path) |
| 333 | + else: |
| 334 | + state_dict = {"state_dict": state_dict} |
| 335 | + torch.save(state_dict, args.checkpoint_path) |
0 commit comments