@@ -140,6 +140,10 @@ static cl::opt<unsigned>
140
140
MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
141
141
cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
142
142
143
+ static cl::opt<int>
144
+ MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
145
+ cl::desc("Maximum depth of the lookup for consecutive stores."));
146
+
143
147
/// Limits the size of scheduling regions in a block.
144
148
/// It avoid long compile times for _very_ large blocks where vector
145
149
/// instructions are spread over a wide range.
@@ -12435,185 +12439,138 @@ bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
12435
12439
BoUpSLP::ValueSet VectorizedStores;
12436
12440
bool Changed = false;
12437
12441
12438
- // Stores the pair of stores (first_store, last_store) in a range, that were
12439
- // already tried to be vectorized. Allows to skip the store ranges that were
12440
- // already tried to be vectorized but the attempts were unsuccessful.
12441
- DenseSet<std::pair<Value *, Value *>> TriedSequences;
12442
- struct StoreDistCompare {
12443
- bool operator()(const std::pair<unsigned, int> &Op1,
12444
- const std::pair<unsigned, int> &Op2) const {
12445
- return Op1.second < Op2.second;
12442
+ int E = Stores.size();
12443
+ SmallBitVector Tails(E, false);
12444
+ int MaxIter = MaxStoreLookup.getValue();
12445
+ SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
12446
+ E, std::make_pair(E, INT_MAX));
12447
+ SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
12448
+ int IterCnt;
12449
+ auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
12450
+ &CheckedPairs,
12451
+ &ConsecutiveChain](int K, int Idx) {
12452
+ if (IterCnt >= MaxIter)
12453
+ return true;
12454
+ if (CheckedPairs[Idx].test(K))
12455
+ return ConsecutiveChain[K].second == 1 &&
12456
+ ConsecutiveChain[K].first == Idx;
12457
+ ++IterCnt;
12458
+ CheckedPairs[Idx].set(K);
12459
+ CheckedPairs[K].set(Idx);
12460
+ std::optional<int> Diff = getPointersDiff(
12461
+ Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
12462
+ Stores[Idx]->getValueOperand()->getType(),
12463
+ Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
12464
+ if (!Diff || *Diff == 0)
12465
+ return false;
12466
+ int Val = *Diff;
12467
+ if (Val < 0) {
12468
+ if (ConsecutiveChain[Idx].second > -Val) {
12469
+ Tails.set(K);
12470
+ ConsecutiveChain[Idx] = std::make_pair(K, -Val);
12471
+ }
12472
+ return false;
12446
12473
}
12474
+ if (ConsecutiveChain[K].second <= Val)
12475
+ return false;
12476
+
12477
+ Tails.set(Idx);
12478
+ ConsecutiveChain[K] = std::make_pair(Idx, Val);
12479
+ return Val == 1;
12447
12480
};
12448
- // A set of pairs (index of store in Stores array ref, Distance of the store
12449
- // address relative to base store address in units).
12450
- using StoreIndexToDistSet =
12451
- std::set<std::pair<unsigned, int>, StoreDistCompare>;
12452
- auto TryToVectorize = [&](const StoreIndexToDistSet &Set) {
12453
- int PrevDist = -1;
12481
+ // Do a quadratic search on all of the given stores in reverse order and find
12482
+ // all of the pairs of stores that follow each other.
12483
+ for (int Idx = E - 1; Idx >= 0; --Idx) {
12484
+ // If a store has multiple consecutive store candidates, search according
12485
+ // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
12486
+ // This is because usually pairing with immediate succeeding or preceding
12487
+ // candidate create the best chance to find slp vectorization opportunity.
12488
+ const int MaxLookDepth = std::max(E - Idx, Idx + 1);
12489
+ IterCnt = 0;
12490
+ for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
12491
+ if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
12492
+ (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
12493
+ break;
12494
+ }
12495
+
12496
+ // Tracks if we tried to vectorize stores starting from the given tail
12497
+ // already.
12498
+ SmallBitVector TriedTails(E, false);
12499
+ // For stores that start but don't end a link in the chain:
12500
+ for (int Cnt = E; Cnt > 0; --Cnt) {
12501
+ int I = Cnt - 1;
12502
+ if (ConsecutiveChain[I].first == E || Tails.test(I))
12503
+ continue;
12504
+ // We found a store instr that starts a chain. Now follow the chain and try
12505
+ // to vectorize it.
12454
12506
BoUpSLP::ValueList Operands;
12455
12507
// Collect the chain into a list.
12456
- for (auto [Idx, Data] : enumerate(Set)) {
12457
- if (Operands.empty() || Data.second - PrevDist == 1) {
12458
- Operands.push_back(Stores[Data.first]);
12459
- PrevDist = Data.second;
12460
- if (Idx != Set.size() - 1)
12461
- continue;
12462
- }
12463
- if (Operands.size() <= 1) {
12464
- Operands.clear();
12465
- Operands.push_back(Stores[Data.first]);
12466
- PrevDist = Data.second;
12467
- continue;
12468
- }
12469
-
12470
- unsigned MaxVecRegSize = R.getMaxVecRegSize();
12471
- unsigned EltSize = R.getVectorElementSize(Operands[0]);
12472
- unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize);
12473
-
12474
- unsigned MaxVF =
12475
- std::min(R.getMaximumVF(EltSize, Instruction::Store), MaxElts);
12476
- auto *Store = cast<StoreInst>(Operands[0]);
12477
- Type *StoreTy = Store->getValueOperand()->getType();
12478
- Type *ValueTy = StoreTy;
12479
- if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
12480
- ValueTy = Trunc->getSrcTy();
12481
- unsigned MinVF = TTI->getStoreMinimumVF(
12482
- R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
12483
-
12484
- if (MaxVF <= MinVF) {
12485
- LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF
12486
- << ") <= "
12487
- << "MinVF (" << MinVF << ")\n");
12488
- }
12489
-
12490
- // FIXME: Is division-by-2 the correct step? Should we assert that the
12491
- // register size is a power-of-2?
12492
- unsigned StartIdx = 0;
12493
- for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
12494
- for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
12495
- ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size);
12496
- if (!VectorizedStores.count(Slice.front()) &&
12497
- !VectorizedStores.count(Slice.back()) &&
12498
- TriedSequences.insert(std::make_pair(Slice.front(), Slice.back()))
12499
- .second &&
12500
- vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
12501
- // Mark the vectorized stores so that we don't vectorize them again.
12502
- VectorizedStores.insert(Slice.begin(), Slice.end());
12503
- Changed = true;
12504
- // If we vectorized initial block, no need to try to vectorize it
12505
- // again.
12506
- if (Cnt == StartIdx)
12507
- StartIdx += Size;
12508
- Cnt += Size;
12509
- continue;
12510
- }
12511
- ++Cnt;
12508
+ while (I != E && !VectorizedStores.count(Stores[I])) {
12509
+ Operands.push_back(Stores[I]);
12510
+ Tails.set(I);
12511
+ if (ConsecutiveChain[I].second != 1) {
12512
+ // Mark the new end in the chain and go back, if required. It might be
12513
+ // required if the original stores come in reversed order, for example.
12514
+ if (ConsecutiveChain[I].first != E &&
12515
+ Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
12516
+ !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
12517
+ TriedTails.set(I);
12518
+ Tails.reset(ConsecutiveChain[I].first);
12519
+ if (Cnt < ConsecutiveChain[I].first + 2)
12520
+ Cnt = ConsecutiveChain[I].first + 2;
12512
12521
}
12513
- // Check if the whole array was vectorized already - exit.
12514
- if (StartIdx >= Operands.size())
12515
- break;
12522
+ break;
12516
12523
}
12517
- Operands.clear();
12518
- Operands.push_back(Stores[Data.first]);
12519
- PrevDist = Data.second;
12524
+ // Move to the next value in the chain.
12525
+ I = ConsecutiveChain[I].first;
12520
12526
}
12521
- } ;
12527
+ assert(!Operands.empty() && "Expected non-empty list of stores.") ;
12522
12528
12523
- // Stores pair (first: index of the store into Stores array ref, address of
12524
- // which taken as base, second: sorted set of pairs {index, dist}, which are
12525
- // indices of stores in the set and their store location distances relative to
12526
- // the base address).
12527
-
12528
- // Need to store the index of the very first store separately, since the set
12529
- // may be reordered after the insertion and the first store may be moved. This
12530
- // container allows to reduce number of calls of getPointersDiff() function.
12531
- SmallVector<std::pair<unsigned, StoreIndexToDistSet>> SortedStores;
12532
- // Inserts the specified store SI with the given index Idx to the set of the
12533
- // stores. If the store with the same distance is found already - stop
12534
- // insertion, try to vectorize already found stores. If some stores from this
12535
- // sequence were not vectorized - try to vectorize them with the new store
12536
- // later. But this logic is applied only to the stores, that come before the
12537
- // previous store with the same distance.
12538
- // Example:
12539
- // 1. store x, %p
12540
- // 2. store y, %p+1
12541
- // 3. store z, %p+2
12542
- // 4. store a, %p
12543
- // 5. store b, %p+3
12544
- // - Scan this from the last to first store. The very first bunch of stores is
12545
- // {5, {{4, -3}, {2, -2}, {3, -1}, {5, 0}}} (the element in SortedStores
12546
- // vector).
12547
- // - The next store in the list - #1 - has the same distance from store #5 as
12548
- // the store #4.
12549
- // - Try to vectorize sequence of stores 4,2,3,5.
12550
- // - If all these stores are vectorized - just drop them.
12551
- // - If some of them are not vectorized (say, #3 and #5), do extra analysis.
12552
- // - Start new stores sequence.
12553
- // The new bunch of stores is {1, {1, 0}}.
12554
- // - Add the stores from previous sequence, that were not vectorized.
12555
- // Here we consider the stores in the reversed order, rather they are used in
12556
- // the IR (Stores are reversed already, see vectorizeStoreChains() function).
12557
- // Store #3 can be added -> comes after store #4 with the same distance as
12558
- // store #1.
12559
- // Store #5 cannot be added - comes before store #4.
12560
- // This logic allows to improve the compile time, we assume that the stores
12561
- // after previous store with the same distance most likely have memory
12562
- // dependencies and no need to waste compile time to try to vectorize them.
12563
- // - Try to vectorize the sequence {1, {1, 0}, {3, 2}}.
12564
- auto FillStoresSet = [&](unsigned Idx, StoreInst *SI) {
12565
- for (auto &Set : SortedStores) {
12566
- std::optional<int> Diff = getPointersDiff(
12567
- Stores[Set.first]->getValueOperand()->getType(),
12568
- Stores[Set.first]->getPointerOperand(),
12569
- SI->getValueOperand()->getType(), SI->getPointerOperand(), *DL, *SE,
12570
- /*StrictCheck=*/true);
12571
- if (!Diff)
12572
- continue;
12573
- auto It = Set.second.find(std::make_pair(Idx, *Diff));
12574
- if (It == Set.second.end()) {
12575
- Set.second.emplace(Idx, *Diff);
12576
- return;
12577
- }
12578
- // Try to vectorize the first found set to avoid duplicate analysis.
12579
- TryToVectorize(Set.second);
12580
- StoreIndexToDistSet PrevSet;
12581
- PrevSet.swap(Set.second);
12582
- Set.first = Idx;
12583
- Set.second.emplace(Idx, 0);
12584
- // Insert stores that followed previous match to try to vectorize them
12585
- // with this store.
12586
- unsigned StartIdx = It->first + 1;
12587
- SmallBitVector UsedStores(Idx - StartIdx);
12588
- // Distances to previously found dup store (or this store, since they
12589
- // store to the same addresses).
12590
- SmallVector<int> Dists(Idx - StartIdx, 0);
12591
- for (const std::pair<unsigned, int> &Pair : reverse(PrevSet)) {
12592
- // Do not try to vectorize sequences, we already tried.
12593
- if (Pair.first <= It->first ||
12594
- VectorizedStores.contains(Stores[Pair.first]))
12595
- break;
12596
- unsigned BI = Pair.first - StartIdx;
12597
- UsedStores.set(BI);
12598
- Dists[BI] = Pair.second - It->second;
12599
- }
12600
- for (unsigned I = StartIdx; I < Idx; ++I) {
12601
- unsigned BI = I - StartIdx;
12602
- if (BI < UsedStores.size() && UsedStores.test(BI))
12603
- Set.second.emplace(I, Dists[BI]);
12529
+ unsigned MaxVecRegSize = R.getMaxVecRegSize();
12530
+ unsigned EltSize = R.getVectorElementSize(Operands[0]);
12531
+ unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize);
12532
+
12533
+ unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
12534
+ MaxElts);
12535
+ auto *Store = cast<StoreInst>(Operands[0]);
12536
+ Type *StoreTy = Store->getValueOperand()->getType();
12537
+ Type *ValueTy = StoreTy;
12538
+ if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
12539
+ ValueTy = Trunc->getSrcTy();
12540
+ unsigned MinVF = TTI->getStoreMinimumVF(
12541
+ R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
12542
+
12543
+ if (MaxVF <= MinVF) {
12544
+ LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= "
12545
+ << "MinVF (" << MinVF << ")\n");
12546
+ }
12547
+
12548
+ // FIXME: Is division-by-2 the correct step? Should we assert that the
12549
+ // register size is a power-of-2?
12550
+ unsigned StartIdx = 0;
12551
+ for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
12552
+ for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
12553
+ ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size);
12554
+ if (!VectorizedStores.count(Slice.front()) &&
12555
+ !VectorizedStores.count(Slice.back()) &&
12556
+ vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
12557
+ // Mark the vectorized stores so that we don't vectorize them again.
12558
+ VectorizedStores.insert(Slice.begin(), Slice.end());
12559
+ Changed = true;
12560
+ // If we vectorized initial block, no need to try to vectorize it
12561
+ // again.
12562
+ if (Cnt == StartIdx)
12563
+ StartIdx += Size;
12564
+ Cnt += Size;
12565
+ continue;
12566
+ }
12567
+ ++Cnt;
12604
12568
}
12605
- return;
12569
+ // Check if the whole array was vectorized already - exit.
12570
+ if (StartIdx >= Operands.size())
12571
+ break;
12606
12572
}
12607
- auto &Res = SortedStores.emplace_back();
12608
- Res.first = Idx;
12609
- Res.second.emplace(Idx, 0);
12610
- };
12611
- for (auto [I, SI] : enumerate(Stores))
12612
- FillStoresSet(I, SI);
12613
-
12614
- // Final vectorization attempt.
12615
- for (auto &Set : SortedStores)
12616
- TryToVectorize(Set.second);
12573
+ }
12617
12574
12618
12575
return Changed;
12619
12576
}
@@ -15247,13 +15204,8 @@ bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
15247
15204
if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
15248
15205
continue;
15249
15206
15250
- // Reverse stores to do bottom-to-top analysis. This is important if the
15251
- // values are stores to the same addresses several times, in this case need
15252
- // to follow the stores order (reversed to meet the memory dependecies).
15253
- SmallVector<StoreInst *> ReversedStores(Pair.second.rbegin(),
15254
- Pair.second.rend());
15255
15207
Changed |= tryToVectorizeSequence<StoreInst>(
15256
- ReversedStores , StoreSorter, AreCompatibleStores,
15208
+ Pair.second , StoreSorter, AreCompatibleStores,
15257
15209
[this, &R](ArrayRef<StoreInst *> Candidates, bool) {
15258
15210
return vectorizeStores(Candidates, R);
15259
15211
},
0 commit comments