@@ -43,99 +43,18 @@ struct __set_intersection_result {
43
43
: __in1_(std::move(__in_iter1)), __in2_(std::move(__in_iter2)), __out_(std::move(__out_iter)) {}
44
44
};
45
45
46
- template <class _AlgPolicy , class _Compare , class _InIter1 , class _Sent1 , class _InIter2 , class _Sent2 , class _OutIter >
47
- struct _LIBCPP_NODISCARD __set_intersector {
48
- _InIter1& __first1_;
49
- const _Sent1& __last1_;
50
- _InIter2& __first2_;
51
- const _Sent2& __last2_;
52
- _OutIter& __result_;
53
- _Compare& __comp_;
54
- bool __prev_advanced_ = true ;
55
-
56
- _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 __set_intersector (
57
- _InIter1& __first1, _Sent1& __last1, _InIter2& __first2, _Sent2& __last2, _OutIter& __result, _Compare& __comp)
58
- : __first1_(__first1),
59
- __last1_(__last1),
60
- __first2_(__first2),
61
- __last2_(__last2),
62
- __result_(__result),
63
- __comp_(__comp) {}
64
-
65
- _LIBCPP_NODISCARD _LIBCPP_HIDE_FROM_ABI
66
- _LIBCPP_CONSTEXPR_SINCE_CXX20 __set_intersection_result<_InIter1, _InIter2, _OutIter>
67
- operator ()() {
68
- while (__first2_ != __last2_) {
69
- __advance1_and_maybe_add_result ();
70
- if (__first1_ == __last1_)
71
- break ;
72
- __advance2_and_maybe_add_result ();
73
- }
74
- return __set_intersection_result<_InIter1, _InIter2, _OutIter>(
75
- _IterOps<_AlgPolicy>::next (std::move (__first1_), std::move (__last1_)),
76
- _IterOps<_AlgPolicy>::next (std::move (__first2_), std::move (__last2_)),
77
- std::move (__result_));
78
- }
79
-
80
- private:
81
- // advance __iter to the first element in the range where !__comp_(__iter, __value)
82
- // add result if this is the second consecutive call without advancing
83
- // this method only works if you alternate calls between __advance1_and_maybe_add_result() and
84
- // __advance2_and_maybe_add_result()
85
- template <class _Iter , class _Sent , class _Value >
86
- _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void
87
- __advance_and_maybe_add_result (_Iter& __iter, const _Sent& __sentinel, const _Value& __value) {
88
- _LIBCPP_CONSTEXPR std::__identity __proj;
89
- // use one-sided binary search for improved algorithmic complexity bounds
90
- // understanding how we can use binary search and still respect complexity
91
- // guarantees is _not_ straightforward, so let me explain: the guarantee
92
- // is "at most 2*(N+M)-1 comparisons", and one-sided binary search will
93
- // necessarily overshoot depending on the position of the needle in the
94
- // haystack -- for instance, if we're searching for 3 in (1, 2, 3, 4),
95
- // we'll check if 3<1, then 3<2, then 3<4, and, finally, 3<3, for a total of
96
- // 4 comparisons, when linear search would have yielded 3. However,
97
- // because we won't need to perform the intervening reciprocal comparisons
98
- // (ie 1<3, 2<3, 4<3), that extra comparison doesn't run afoul of the
99
- // guarantee. Additionally, this type of scenario can only happen for match
100
- // distances of up to 5 elements, because 2*log2(8) is 6, and we'll still
101
- // be worse-off at position 5 of an 8-element set. From then onwards
102
- // these scenarios can't happen.
103
- // TL;DR: we'll be 1 comparison worse-off compared to the classic linear-
104
- // searching algorithm if matching position 3 of a set with 4 elements,
105
- // or position 5 if the set has 7 or 8 elements, but we'll never exceed
106
- // the complexity guarantees from the standard.
107
- _Iter __tmp = std::__lower_bound_onesided<_AlgPolicy>(__iter, __sentinel, __value, __comp_, __proj);
108
- std::swap (__tmp, __iter);
109
- __add_output_unless (__tmp != __iter);
110
- }
111
-
112
- // advance __first1_ to the first element in the range where !__comp_(*__first1_, *__first2_)
113
- // add result if neither __first1_ nor __first2_ advanced in the last attempt (meaning they are equal)
114
- _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void __advance1_and_maybe_add_result () {
115
- __advance_and_maybe_add_result (__first1_, __last1_, *__first2_);
116
- }
117
-
118
- // advance __first2_ to the first element in the range where !__comp_(*__first2_, *__first1_)
119
- // add result if neither __first1_ nor __first2_ advanced in the last attempt (meaning they are equal)
120
- _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void __advance2_and_maybe_add_result () {
121
- __advance_and_maybe_add_result (__first2_, __last2_, *__first1_);
122
- }
123
-
124
- _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void __add_output_unless (bool __advanced) {
125
- if (__advanced | __prev_advanced_) {
126
- __prev_advanced_ = __advanced;
127
- } else {
128
- *__result_ = *__first1_;
129
- ++__result_;
130
- ++__first1_;
131
- ++__first2_;
132
- __prev_advanced_ = true ;
133
- }
134
- }
135
- };
136
-
137
- // with forward iterators we can make multiple passes over the data, allowing the use of one-sided binary search to reduce best-case
138
- // complexity to log(N)
46
+ // With forward iterators we can make multiple passes over the data, allowing the use of one-sided binary search to
47
+ // reduce best-case complexity to log(N). Understanding how we can use binary search and still respect complexity
48
+ // guarantees is _not_ straightforward: the guarantee is "at most 2*(N+M)-1 comparisons", and one-sided binary search
49
+ // will necessarily overshoot depending on the position of the needle in the haystack -- for instance, if we're
50
+ // searching for 3 in (1, 2, 3, 4), we'll check if 3<1, then 3<2, then 3<4, and, finally, 3<3, for a total of 4
51
+ // comparisons, when linear search would have yielded 3. However, because we won't need to perform the intervening
52
+ // reciprocal comparisons (ie 1<3, 2<3, 4<3), that extra comparison doesn't run afoul of the guarantee. Additionally,
53
+ // this type of scenario can only happen for match distances of up to 5 elements, because 2*log2(8) is 6, and we'll
54
+ // still be worse-off at position 5 of an 8-element set. From then onwards these scenarios can't happen. TL;DR: we'll be
55
+ // 1 comparison worse-off compared to the classic linear- searching algorithm if matching position 3 of a set with 4
56
+ // elements, or position 5 if the set has 7 or 8 elements, but we'll never exceed the complexity guarantees from the
57
+ // standard.
139
58
template <class _AlgPolicy ,
140
59
class _Compare ,
141
60
class _InForwardIter1 ,
@@ -154,9 +73,38 @@ __set_intersection(
154
73
_Compare&& __comp,
155
74
std::forward_iterator_tag,
156
75
std::forward_iterator_tag) {
157
- std::__set_intersector<_AlgPolicy, _Compare, _InForwardIter1, _Sent1, _InForwardIter2, _Sent2, _OutIter>
158
- __intersector (__first1, __last1, __first2, __last2, __result, __comp);
159
- return __intersector ();
76
+ _LIBCPP_CONSTEXPR std::__identity __proj;
77
+ bool __prev_advanced = true ;
78
+
79
+ auto __add_output_unless = [&](bool __advanced) {
80
+ if (__advanced | __prev_advanced) {
81
+ __prev_advanced = __advanced;
82
+ } else {
83
+ *__result = *__first1;
84
+ ++__result;
85
+ ++__first1;
86
+ ++__first2;
87
+ __prev_advanced = true ;
88
+ }
89
+ };
90
+
91
+ while (__first2 != __last2) {
92
+ _InForwardIter1 __first1_next =
93
+ std::__lower_bound_onesided<_AlgPolicy>(__first1, __last1, *__first2, __comp, __proj);
94
+ std::swap (__first1_next, __first1);
95
+ __add_output_unless (__first1 != __first1_next);
96
+ if (__first1 == __last1)
97
+ break ;
98
+
99
+ _InForwardIter2 __first2_next =
100
+ std::__lower_bound_onesided<_AlgPolicy>(__first2, __last2, *__first1, __comp, __proj);
101
+ std::swap (__first2_next, __first2);
102
+ __add_output_unless (__first2 != __first2_next);
103
+ }
104
+ return __set_intersection_result<_InForwardIter1, _InForwardIter2, _OutIter>(
105
+ _IterOps<_AlgPolicy>::next (std::move (__first1), std::move (__last1)),
106
+ _IterOps<_AlgPolicy>::next (std::move (__first2), std::move (__last2)),
107
+ std::move (__result));
160
108
}
161
109
162
110
// input iterators are not suitable for multipass algorithms, so we stick to the classic single-pass version
0 commit comments