@@ -992,7 +992,8 @@ class LoopVectorizationCostModel {
992
992
// / If interleave count has been specified by metadata it will be returned.
993
993
// / Otherwise, the interleave count is computed and returned. VF and LoopCost
994
994
// / are the selected vectorization factor and the cost of the selected VF.
995
- unsigned selectInterleaveCount (ElementCount VF, InstructionCost LoopCost);
995
+ unsigned selectInterleaveCount (VPlan &Plan, ElementCount VF,
996
+ InstructionCost LoopCost);
996
997
997
998
// / Memory access instruction may be vectorized in more than one way.
998
999
// / Form of instruction after vectorization depends on cost.
@@ -4871,8 +4872,232 @@ void LoopVectorizationCostModel::collectElementTypesForWidening() {
4871
4872
}
4872
4873
}
4873
4874
4875
+ // / Estimate the register usage for \p Plan and vectorization factors in \p VFs.
4876
+ // / Returns the register usage for each VF in \p VFs.
4877
+ static SmallVector<LoopVectorizationCostModel::RegisterUsage, 8 >
4878
+ calculateRegisterUsage (VPlan &Plan, ArrayRef<ElementCount> VFs,
4879
+ const TargetTransformInfo &TTI) {
4880
+ // This function calculates the register usage by measuring the highest number
4881
+ // of values that are alive at a single location. Obviously, this is a very
4882
+ // rough estimation. We scan the loop in a topological order in order and
4883
+ // assign a number to each recipe. We use RPO to ensure that defs are
4884
+ // met before their users. We assume that each recipe that has in-loop
4885
+ // users starts an interval. We record every time that an in-loop value is
4886
+ // used, so we have a list of the first and last occurrences of each
4887
+ // recipe. Next, we transpose this data structure into a multi map that
4888
+ // holds the list of intervals that *end* at a specific location. This multi
4889
+ // map allows us to perform a linear search. We scan the instructions linearly
4890
+ // and record each time that a new interval starts, by placing it in a set.
4891
+ // If we find this value in the multi-map then we remove it from the set.
4892
+ // The max register usage is the maximum size of the set.
4893
+ // We also search for instructions that are defined outside the loop, but are
4894
+ // used inside the loop. We need this number separately from the max-interval
4895
+ // usage number because when we unroll, loop-invariant values do not take
4896
+ // more register.
4897
+ LoopVectorizationCostModel::RegisterUsage RU;
4898
+
4899
+ // Each 'key' in the map opens a new interval. The values
4900
+ // of the map are the index of the 'last seen' usage of the
4901
+ // recipe that is the key.
4902
+ using IntervalMap = SmallDenseMap<VPRecipeBase *, unsigned , 16 >;
4903
+
4904
+ // Maps recipe to its index.
4905
+ SmallVector<VPRecipeBase *, 64 > IdxToRecipe;
4906
+ // Marks the end of each interval.
4907
+ IntervalMap EndPoint;
4908
+ // Saves the list of recipe indices that are used in the loop.
4909
+ SmallPtrSet<VPRecipeBase *, 8 > Ends;
4910
+ // Saves the list of values that are used in the loop but are defined outside
4911
+ // the loop (not including non-recipe values such as arguments and
4912
+ // constants).
4913
+ SmallSetVector<VPValue *, 8 > LoopInvariants;
4914
+ LoopInvariants.insert (&Plan.getVectorTripCount ());
4915
+
4916
+ ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT (
4917
+ Plan.getVectorLoopRegion ());
4918
+ for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
4919
+ if (!VPBB->getParent ())
4920
+ break ;
4921
+ for (VPRecipeBase &R : *VPBB) {
4922
+ IdxToRecipe.push_back (&R);
4923
+
4924
+ // Save the end location of each USE.
4925
+ for (VPValue *U : R.operands ()) {
4926
+ auto *DefR = U->getDefiningRecipe ();
4927
+
4928
+ // Ignore non-recipe values such as arguments, constants, etc.
4929
+ // FIXME: Might need some motivation why these values are ignored. If
4930
+ // for example an argument is used inside the loop it will increase the
4931
+ // register pressure (so shouldn't we add it to LoopInvariants).
4932
+ if (!DefR && (!U->getLiveInIRValue () ||
4933
+ !isa<Instruction>(U->getLiveInIRValue ())))
4934
+ continue ;
4935
+
4936
+ // If this recipe is outside the loop then record it and continue.
4937
+ if (!DefR) {
4938
+ LoopInvariants.insert (U);
4939
+ continue ;
4940
+ }
4941
+
4942
+ // Overwrite previous end points.
4943
+ EndPoint[DefR] = IdxToRecipe.size ();
4944
+ Ends.insert (DefR);
4945
+ }
4946
+ }
4947
+ if (VPBB == Plan.getVectorLoopRegion ()->getExiting ()) {
4948
+ // VPWidenIntOrFpInductionRecipes are used implicitly at the end of the
4949
+ // exiting block, where their increment will get materialized eventually.
4950
+ for (auto &R : Plan.getVectorLoopRegion ()->getEntryBasicBlock ()->phis ()) {
4951
+ if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
4952
+ EndPoint[&R] = IdxToRecipe.size ();
4953
+ Ends.insert (&R);
4954
+ }
4955
+ }
4956
+ }
4957
+ }
4958
+
4959
+ // Saves the list of intervals that end with the index in 'key'.
4960
+ using RecipeList = SmallVector<VPRecipeBase *, 2 >;
4961
+ SmallDenseMap<unsigned , RecipeList, 16 > TransposeEnds;
4962
+
4963
+ // Transpose the EndPoints to a list of values that end at each index.
4964
+ for (auto &Interval : EndPoint)
4965
+ TransposeEnds[Interval.second ].push_back (Interval.first );
4966
+
4967
+ SmallPtrSet<VPRecipeBase *, 8 > OpenIntervals;
4968
+ SmallVector<LoopVectorizationCostModel::RegisterUsage, 8 > RUs (VFs.size ());
4969
+ SmallVector<SmallMapVector<unsigned , unsigned , 4 >, 8 > MaxUsages (VFs.size ());
4970
+
4971
+ LLVM_DEBUG (dbgs () << " LV(REG): Calculating max register usage:\n " );
4972
+
4973
+ VPTypeAnalysis TypeInfo (Plan.getCanonicalIV ()->getScalarType ());
4974
+
4975
+ const auto &TTICapture = TTI;
4976
+ auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
4977
+ if (Ty->isTokenTy () || !VectorType::isValidElementType (Ty) ||
4978
+ (VF.isScalable () &&
4979
+ !TTICapture.isElementTypeLegalForScalableVector (Ty)))
4980
+ return 0 ;
4981
+ return TTICapture.getRegUsageForType (VectorType::get (Ty, VF));
4982
+ };
4983
+
4984
+ for (unsigned int Idx = 0 , Sz = IdxToRecipe.size (); Idx < Sz; ++Idx) {
4985
+ VPRecipeBase *R = IdxToRecipe[Idx];
4986
+
4987
+ // Remove all of the recipes that end at this location.
4988
+ RecipeList &List = TransposeEnds[Idx];
4989
+ for (VPRecipeBase *ToRemove : List)
4990
+ OpenIntervals.erase (ToRemove);
4991
+
4992
+ // Ignore recipes that are never used within the loop.
4993
+ if (!Ends.count (R) && !R->mayHaveSideEffects ())
4994
+ continue ;
4995
+
4996
+ // For each VF find the maximum usage of registers.
4997
+ for (unsigned J = 0 , E = VFs.size (); J < E; ++J) {
4998
+ // Count the number of registers used, per register class, given all open
4999
+ // intervals.
5000
+ // Note that elements in this SmallMapVector will be default constructed
5001
+ // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
5002
+ // there is no previous entry for ClassID.
5003
+ SmallMapVector<unsigned , unsigned , 4 > RegUsage;
5004
+
5005
+ if (VFs[J].isScalar ()) {
5006
+ for (auto *Inst : OpenIntervals) {
5007
+ for (VPValue *DefV : Inst->definedValues ()) {
5008
+ unsigned ClassID = TTI.getRegisterClassForType (
5009
+ false , TypeInfo.inferScalarType (DefV));
5010
+ // FIXME: The target might use more than one register for the type
5011
+ // even in the scalar case.
5012
+ RegUsage[ClassID] += 1 ;
5013
+ }
5014
+ }
5015
+ } else {
5016
+ for (auto *R : OpenIntervals) {
5017
+ if (isa<VPVectorPointerRecipe, VPReverseVectorPointerRecipe>(R))
5018
+ continue ;
5019
+ if (isa<VPCanonicalIVPHIRecipe, VPReplicateRecipe, VPDerivedIVRecipe,
5020
+ VPScalarIVStepsRecipe>(R) ||
5021
+ (isa<VPInstruction>(R) &&
5022
+ all_of (cast<VPSingleDefRecipe>(R)->users (), [&](VPUser *U) {
5023
+ return cast<VPRecipeBase>(U)->usesScalars (
5024
+ R->getVPSingleValue ());
5025
+ }))) {
5026
+ unsigned ClassID = TTI.getRegisterClassForType (
5027
+ false , TypeInfo.inferScalarType (R->getVPSingleValue ()));
5028
+ // FIXME: The target might use more than one register for the type
5029
+ // even in the scalar case.
5030
+ RegUsage[ClassID] += 1 ;
5031
+ } else {
5032
+ for (VPValue *DefV : R->definedValues ()) {
5033
+ Type *ScalarTy = TypeInfo.inferScalarType (DefV);
5034
+ unsigned ClassID = TTI.getRegisterClassForType (true , ScalarTy);
5035
+ RegUsage[ClassID] += GetRegUsage (ScalarTy, VFs[J]);
5036
+ }
5037
+ }
5038
+ }
5039
+ }
5040
+
5041
+ for (const auto &Pair : RegUsage) {
5042
+ auto &Entry = MaxUsages[J][Pair.first ];
5043
+ Entry = std::max (Entry, Pair.second );
5044
+ }
5045
+ }
5046
+
5047
+ LLVM_DEBUG (dbgs () << " LV(REG): At #" << Idx << " Interval # "
5048
+ << OpenIntervals.size () << ' \n ' );
5049
+
5050
+ // Add the current recipe to the list of open intervals.
5051
+ OpenIntervals.insert (R);
5052
+ }
5053
+
5054
+ for (unsigned Idx = 0 , End = VFs.size (); Idx < End; ++Idx) {
5055
+ // Note that elements in this SmallMapVector will be default constructed
5056
+ // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
5057
+ // there is no previous entry for ClassID.
5058
+ SmallMapVector<unsigned , unsigned , 4 > Invariant;
5059
+
5060
+ for (auto *In : LoopInvariants) {
5061
+ // FIXME: The target might use more than one register for the type
5062
+ // even in the scalar case.
5063
+ bool IsScalar = all_of (In->users (), [&](VPUser *U) {
5064
+ return cast<VPRecipeBase>(U)->usesScalars (In);
5065
+ });
5066
+
5067
+ ElementCount VF = IsScalar ? ElementCount::getFixed (1 ) : VFs[Idx];
5068
+ unsigned ClassID = TTI.getRegisterClassForType (
5069
+ VF.isVector (), TypeInfo.inferScalarType (In));
5070
+ Invariant[ClassID] += GetRegUsage (TypeInfo.inferScalarType (In), VF);
5071
+ }
5072
+
5073
+ LLVM_DEBUG ({
5074
+ dbgs () << " LV(REG): VF = " << VFs[Idx] << ' \n ' ;
5075
+ dbgs () << " LV(REG): Found max usage: " << MaxUsages[Idx].size ()
5076
+ << " item\n " ;
5077
+ for (const auto &pair : MaxUsages[Idx]) {
5078
+ dbgs () << " LV(REG): RegisterClass: "
5079
+ << TTI.getRegisterClassName (pair.first ) << " , " << pair.second
5080
+ << " registers\n " ;
5081
+ }
5082
+ dbgs () << " LV(REG): Found invariant usage: " << Invariant.size ()
5083
+ << " item\n " ;
5084
+ for (const auto &pair : Invariant) {
5085
+ dbgs () << " LV(REG): RegisterClass: "
5086
+ << TTI.getRegisterClassName (pair.first ) << " , " << pair.second
5087
+ << " registers\n " ;
5088
+ }
5089
+ });
5090
+
5091
+ RU.LoopInvariantRegs = Invariant;
5092
+ RU.MaxLocalUsers = MaxUsages[Idx];
5093
+ RUs[Idx] = RU;
5094
+ }
5095
+
5096
+ return RUs;
5097
+ }
5098
+
4874
5099
unsigned
4875
- LoopVectorizationCostModel::selectInterleaveCount (ElementCount VF,
5100
+ LoopVectorizationCostModel::selectInterleaveCount (VPlan &Plan, ElementCount VF,
4876
5101
InstructionCost LoopCost) {
4877
5102
// -- The interleave heuristics --
4878
5103
// We interleave the loop in order to expose ILP and reduce the loop overhead.
@@ -4922,7 +5147,7 @@ LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
4922
5147
return 1 ;
4923
5148
}
4924
5149
4925
- RegisterUsage R = calculateRegisterUsage ({VF})[0 ];
5150
+ RegisterUsage R = :: calculateRegisterUsage (Plan, {VF}, TTI )[0 ];
4926
5151
// We divide by these constants so assume that we have at least one
4927
5152
// instruction that uses at least one register.
4928
5153
for (auto &Pair : R.MaxLocalUsers ) {
@@ -10760,7 +10985,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10760
10985
AddBranchWeights, CM.CostKind );
10761
10986
if (LVP.hasPlanWithVF (VF.Width )) {
10762
10987
// Select the interleave count.
10763
- IC = CM.selectInterleaveCount (VF.Width , VF.Cost );
10988
+ IC = CM.selectInterleaveCount (LVP. getPlanFor (VF. Width ), VF.Width , VF.Cost );
10764
10989
10765
10990
unsigned SelectedIC = std::max (IC, UserIC);
10766
10991
// Optimistically generate runtime checks if they are needed. Drop them if
0 commit comments