@@ -622,6 +622,13 @@ RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST)
622
622
all (typeIsLegalIntOrFPVec (0 , IntOrFPVecTys, ST),
623
623
typeIsLegalIntOrFPVec (1 , IntOrFPVecTys, ST))));
624
624
625
+
626
+ getActionDefinitionsBuilder (G_INSERT_SUBVECTOR)
627
+ .customIf (all (typeIsLegalBoolVec (0 , BoolVecTys, ST),
628
+ typeIsLegalBoolVec (1 , BoolVecTys, ST)))
629
+ .customIf (all (typeIsLegalIntOrFPVec (0 , IntOrFPVecTys, ST),
630
+ typeIsLegalIntOrFPVec (1 , IntOrFPVecTys, ST)));
631
+
625
632
getLegacyLegalizerInfo ().computeTables ();
626
633
}
627
634
@@ -865,9 +872,7 @@ static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL,
865
872
// / Gets the two common "VL" operands: an all-ones mask and the vector length.
866
873
// / VecTy is a scalable vector type.
867
874
static std::pair<MachineInstrBuilder, Register>
868
- buildDefaultVLOps (const DstOp &Dst, MachineIRBuilder &MIB,
869
- MachineRegisterInfo &MRI) {
870
- LLT VecTy = Dst.getLLTTy (MRI);
875
+ buildDefaultVLOps (LLT VecTy, MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
871
876
assert (VecTy.isScalableVector () && " Expecting scalable container type" );
872
877
Register VL (RISCV::X0);
873
878
MachineInstrBuilder Mask = buildAllOnesMask (VecTy, VL, MIB, MRI);
@@ -919,7 +924,7 @@ bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI,
919
924
// Handle case of s64 element vectors on rv32
920
925
if (XLenTy.getSizeInBits () == 32 &&
921
926
VecTy.getElementType ().getSizeInBits () == 64 ) {
922
- auto [_, VL] = buildDefaultVLOps (Dst, MIB, MRI);
927
+ auto [_, VL] = buildDefaultVLOps (MRI. getType ( Dst) , MIB, MRI);
923
928
buildSplatSplitS64WithVL (Dst, MIB.buildUndef (VecTy), SplatVal, VL, MIB,
924
929
MRI);
925
930
MI.eraseFromParent ();
@@ -1054,6 +1059,142 @@ bool RISCVLegalizerInfo::legalizeExtractSubvector(MachineInstr &MI,
1054
1059
return true ;
1055
1060
}
1056
1061
1062
+ bool RISCVLegalizerInfo::legalizeInsertSubvector (MachineInstr &MI,
1063
+ LegalizerHelper &Helper,
1064
+ MachineIRBuilder &MIB) const {
1065
+ GInsertSubvector &IS = cast<GInsertSubvector>(MI);
1066
+
1067
+ MachineRegisterInfo &MRI = *MIB.getMRI ();
1068
+
1069
+ Register Dst = IS.getReg (0 );
1070
+ Register BigVec = IS.getBigVec ();
1071
+ Register LitVec = IS.getSubVec ();
1072
+ uint64_t Idx = IS.getIndexImm ();
1073
+
1074
+ LLT BigTy = MRI.getType (BigVec);
1075
+ LLT LitTy = MRI.getType (LitVec);
1076
+
1077
+ if (Idx == 0 ||
1078
+ MRI.getVRegDef (BigVec)->getOpcode () == TargetOpcode::G_IMPLICIT_DEF)
1079
+ return true ;
1080
+
1081
+ // We don't have the ability to slide mask vectors up indexed by their i1
1082
+ // elements; the smallest we can do is i8. Often we are able to bitcast to
1083
+ // equivalent i8 vectors. Otherwise, we can must zeroextend to equivalent i8
1084
+ // vectors and truncate down after the insert.
1085
+ if (LitTy.getElementType () == LLT::scalar (1 )) {
1086
+ auto BigTyMinElts = BigTy.getElementCount ().getKnownMinValue ();
1087
+ auto LitTyMinElts = LitTy.getElementCount ().getKnownMinValue ();
1088
+ if (BigTyMinElts >= 8 && LitTyMinElts >= 8 )
1089
+ return Helper.bitcast (
1090
+ IS, 0 ,
1091
+ LLT::vector (BigTy.getElementCount ().divideCoefficientBy (8 ), 8 ));
1092
+
1093
+ // We can't slide this mask vector up indexed by its i1 elements.
1094
+ // This poses a problem when we wish to insert a scalable vector which
1095
+ // can't be re-expressed as a larger type. Just choose the slow path and
1096
+ // extend to a larger type, then truncate back down.
1097
+ BigTy = BigTy.changeElementType (LLT::scalar (8 ));
1098
+ LitTy = LitTy.changeElementType (LLT::scalar (8 ));
1099
+ auto BigZExt = MIB.buildZExt (BigTy, BigVec);
1100
+ auto LitZExt = MIB.buildZExt (LitTy, LitVec);
1101
+ auto Insert = MIB.buildInsertSubvector (BigTy, BigZExt, LitZExt, Idx);
1102
+ auto SplatZero = MIB.buildSplatVector (
1103
+ BigTy, MIB.buildConstant (BigTy.getElementType (), 0 ));
1104
+ MIB.buildICmp (CmpInst::Predicate::ICMP_NE, Dst, Insert, SplatZero);
1105
+ MI.eraseFromParent ();
1106
+ return true ;
1107
+ }
1108
+
1109
+ const RISCVRegisterInfo *TRI = STI.getRegisterInfo ();
1110
+ unsigned SubRegIdx, RemIdx;
1111
+ std::tie (SubRegIdx, RemIdx) =
1112
+ RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs (
1113
+ getMVTForLLT (BigTy), getMVTForLLT (LitTy), Idx, TRI);
1114
+
1115
+ TypeSize VecRegSize = TypeSize::getScalable (RISCV::RVVBitsPerBlock);
1116
+ assert (isPowerOf2_64 (
1117
+ STI.expandVScale (LitTy.getSizeInBits ()).getKnownMinValue ()));
1118
+ bool ExactlyVecRegSized =
1119
+ STI.expandVScale (LitTy.getSizeInBits ())
1120
+ .isKnownMultipleOf (STI.expandVScale (VecRegSize));
1121
+
1122
+ // If the Idx has been completely eliminated and this subvector's size is a
1123
+ // vector register or a multiple thereof, or the surrounding elements are
1124
+ // undef, then this is a subvector insert which naturally aligns to a vector
1125
+ // register. These can easily be handled using subregister manipulation.
1126
+ if (RemIdx == 0 &&
1127
+ (ExactlyVecRegSized ||
1128
+ MRI.getVRegDef (BigVec)->getOpcode () == TargetOpcode::G_IMPLICIT_DEF))
1129
+ return true ;
1130
+
1131
+ // If the subvector is smaller than a vector register, then the insertion
1132
+ // must preserve the undisturbed elements of the register. We do this by
1133
+ // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
1134
+ // (which resolves to a subregister copy), performing a VSLIDEUP to place the
1135
+ // subvector within the vector register, and an INSERT_SUBVECTOR of that
1136
+ // LMUL=1 type back into the larger vector (resolving to another subregister
1137
+ // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
1138
+ // to avoid allocating a large register group to hold our subvector.
1139
+
1140
+ // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
1141
+ // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
1142
+ // (in our case undisturbed). This means we can set up a subvector insertion
1143
+ // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
1144
+ // size of the subvector.
1145
+ const LLT XLenTy (STI.getXLenVT ());
1146
+ LLT InterLitTy = BigTy;
1147
+ Register AlignedExtract = BigVec;
1148
+ unsigned AlignedIdx = Idx - RemIdx;
1149
+ if (TypeSize::isKnownGT (BigTy.getSizeInBits (),
1150
+ getLMUL1Ty (BigTy).getSizeInBits ())) {
1151
+ InterLitTy = getLMUL1Ty (BigTy);
1152
+ // Extract a subvector equal to the nearest full vector register type. This
1153
+ // should resolve to a G_EXTRACT on a subreg.
1154
+ AlignedExtract =
1155
+ MIB.buildExtractSubvector (InterLitTy, BigVec, AlignedIdx).getReg (0 );
1156
+ }
1157
+
1158
+ auto Insert = MIB.buildInsertSubvector (InterLitTy, MIB.buildUndef (InterLitTy),
1159
+ LitVec, 0 );
1160
+
1161
+ auto [Mask, _] = buildDefaultVLOps (BigTy, MIB, MRI);
1162
+ auto VL = MIB.buildVScale (XLenTy, LitTy.getElementCount ().getKnownMinValue ());
1163
+
1164
+ // Use tail agnostic policy if we're inserting over InterLitTy's tail.
1165
+ ElementCount EndIndex =
1166
+ ElementCount::getScalable (RemIdx) + LitTy.getElementCount ();
1167
+ uint64_t Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
1168
+ if (STI.expandVScale (EndIndex) ==
1169
+ STI.expandVScale (InterLitTy.getElementCount ()))
1170
+ Policy = RISCVII::TAIL_AGNOSTIC;
1171
+
1172
+ // If we're inserting into the lowest elements, use a tail undisturbed
1173
+ // vmv.v.v.
1174
+ MachineInstrBuilder Inserted;
1175
+ if (RemIdx == 0 ) {
1176
+ Inserted = MIB.buildInstr (RISCV::G_VMV_V_V_VL, {InterLitTy},
1177
+ {AlignedExtract, Insert, VL});
1178
+ } else {
1179
+ auto SlideupAmt = MIB.buildVScale (XLenTy, RemIdx);
1180
+ // Construct the vector length corresponding to RemIdx + length(LitTy).
1181
+ VL = MIB.buildAdd (XLenTy, SlideupAmt, VL);
1182
+ Inserted =
1183
+ MIB.buildInstr (RISCV::G_VSLIDEUP_VL, {InterLitTy},
1184
+ {AlignedExtract, Insert, SlideupAmt, Mask, VL, Policy});
1185
+ }
1186
+
1187
+ // If required, insert this subvector back into the correct vector register.
1188
+ // This should resolve to an INSERT_SUBREG instruction.
1189
+ if (TypeSize::isKnownGT (BigTy.getSizeInBits (), InterLitTy.getSizeInBits ()))
1190
+ MIB.buildInsertSubvector (Dst, BigVec, LitVec, AlignedIdx);
1191
+ else
1192
+ Inserted->getOperand (0 ).setReg (Dst);
1193
+
1194
+ MI.eraseFromParent ();
1195
+ return true ;
1196
+ }
1197
+
1057
1198
bool RISCVLegalizerInfo::legalizeCustom (
1058
1199
LegalizerHelper &Helper, MachineInstr &MI,
1059
1200
LostDebugLocObserver &LocObserver) const {
@@ -1126,6 +1267,8 @@ bool RISCVLegalizerInfo::legalizeCustom(
1126
1267
return legalizeSplatVector (MI, MIRBuilder);
1127
1268
case TargetOpcode::G_EXTRACT_SUBVECTOR:
1128
1269
return legalizeExtractSubvector (MI, MIRBuilder);
1270
+ case TargetOpcode::G_INSERT_SUBVECTOR:
1271
+ return legalizeInsertSubvector (MI, Helper, MIRBuilder);
1129
1272
case TargetOpcode::G_LOAD:
1130
1273
case TargetOpcode::G_STORE:
1131
1274
return legalizeLoadStore (MI, Helper, MIRBuilder);
0 commit comments