@@ -59,19 +59,19 @@ func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16
59
59
60
60
61
61
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_transfer_read_complex(
62
- // CHECK-SAME: %[[VAL_0 :.*]]: tensor<45x80x16xf32>,
63
- // CHECK-SAME: %[[VAL_1 :.*]]: index, %[[VAL_2 :.*]]: index, %[[VAL_3 :.*]]: index, %[[VAL_4 :.*]]: index,
64
- // CHECK-SAME: %[[VAL_5 :.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
62
+ // CHECK-SAME: %[[ARG0 :.*]]: tensor<45x80x16xf32>,
63
+ // CHECK-SAME: %[[ARG1 :.*]]: index, %[[ARG2 :.*]]: index, %[[ARG3 :.*]]: index, %[[ARG4 :.*]]: index,
64
+ // CHECK-SAME: %[[ARG5 :.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
65
65
66
66
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
67
67
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
68
68
// CHECK-DAG: %[[C79:.*]] = arith.constant 79 : index
69
- // CHECK: %[[VAL6 :.*]] = arith.addi %[[VAL_1 ]], %[[VAL_2 ]] : index
70
- // CHECK: %[[VAL7 :.*]] = arith.addi %[[VAL_3 ]], %[[VAL_4 ]] : index
69
+ // CHECK: %[[ADD1 :.*]] = arith.addi %[[ARG1 ]], %[[ARG2 ]] : index
70
+ // CHECK: %[[ADD2 :.*]] = arith.addi %[[ARG3 ]], %[[ARG4 ]] : index
71
71
72
- // CHECK: %[[VAL_20 :.*]] = vector.transfer_read %[[VAL_0 ]]{{\[}}%[[VAL6 ]], %[[C79]], %[[VAL7 ]]], %[[CST]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
73
- // CHECK: %[[VAL_21 :.*]] = vector.transfer_write %[[VAL_20 ]], %[[VAL_5 ]]{{\[}}%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
74
- // CHECK: return %[[VAL_21 ]] : tensor<1x4xf32>
72
+ // CHECK: %[[READ :.*]] = vector.transfer_read %[[ARG0 ]]{{\[}}%[[ADD1 ]], %[[C79]], %[[ADD2 ]]], %[[CST]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
73
+ // CHECK: %[[WRITE :.*]] = vector.transfer_write %[[READ ]], %[[ARG5 ]]{{\[}}%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
74
+ // CHECK: return %[[WRITE ]] : tensor<1x4xf32>
75
75
// CHECK: }
76
76
77
77
// -----
@@ -93,17 +93,17 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<8
93
93
}
94
94
95
95
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(
96
- // CHECK-SAME: %[[VAL_0 :.*]]: tensor<80x16xf32>,
97
- // CHECK-SAME: %[[VAL_1 :.*]]: index,
98
- // CHECK-SAME: %[[VAL_2 :.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
96
+ // CHECK-SAME: %[[ARG0 :.*]]: tensor<80x16xf32>,
97
+ // CHECK-SAME: %[[ARG1 :.*]]: index,
98
+ // CHECK-SAME: %[[ARG2 :.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
99
99
100
- // CHECK-DAG: %[[VAL_5 :.*]] = arith.constant 0.000000e+00 : f32
101
- // CHECK-DAG: %[[VAL_6 :.*]] = arith.constant 0 : index
102
- // CHECK-DAG: %[[VAL_7 :.*]] = arith.constant 79 : index
100
+ // CHECK-DAG: %[[CST :.*]] = arith.constant 0.000000e+00 : f32
101
+ // CHECK-DAG: %[[C0 :.*]] = arith.constant 0 : index
102
+ // CHECK-DAG: %[[C79 :.*]] = arith.constant 79 : index
103
103
104
- // CHECK: %[[VAL_11 :.*]] = vector.transfer_read %[[VAL_0 ]]{{\[}}%[[VAL_7 ]], %[[VAL_1 ]]], %[[VAL_5 ]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
105
- // CHECK: %[[VAL_12 :.*]] = vector.transfer_write %[[VAL_11 ]], %[[VAL_2 ]]{{\[}}%[[VAL_6 ]], %[[VAL_6 ]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
106
- // CHECK: return %[[VAL_12 ]] : tensor<1x4xf32>
104
+ // CHECK: %[[READ :.*]] = vector.transfer_read %[[ARG0 ]]{{\[}}%[[C79 ]], %[[ARG1 ]]], %[[CST ]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
105
+ // CHECK: %[[WRITE :.*]] = vector.transfer_write %[[READ ]], %[[ARG2 ]]{{\[}}%[[C0 ]], %[[C0 ]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
106
+ // CHECK: return %[[WRITE ]] : tensor<1x4xf32>
107
107
// CHECK: }
108
108
109
109
// -----
0 commit comments