10
10
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11
11
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12
12
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13
- // DEFINE: %{run_opts} = -e main -entry-point-result=void
13
+ // DEFINE: %{run_opts} = -e entry -entry-point-result=void
14
14
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
15
15
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
16
16
//
@@ -90,7 +90,7 @@ module {
90
90
//
91
91
// Main driver.
92
92
//
93
- func.func @main () {
93
+ func.func @entry () {
94
94
%c0 = arith.constant 0 : index
95
95
96
96
// Initialize various matrices, dense for stress testing,
@@ -140,94 +140,33 @@ module {
140
140
%b4 = sparse_tensor.convert %sb : tensor <8 x4 xf64 > to tensor <8 x4 xf64 , #DCSR >
141
141
142
142
//
143
- // Sanity check before going into the computations.
144
- //
145
- // CHECK: ---- Sparse Tensor ----
146
- // CHECK-NEXT: nse = 32
147
- // CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
148
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
149
- // CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
150
- // CHECK-NEXT: ----
151
- //
152
- sparse_tensor.print %a1 : tensor <4 x8 xf64 , #CSR >
153
-
154
- //
155
- // CHECK: ---- Sparse Tensor ----
156
- // CHECK-NEXT: nse = 32
157
- // CHECK-NEXT: pos[0] : ( 0, 4
158
- // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
159
- // CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
160
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
161
- // CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
162
- // CHECK-NEXT: ----
163
- //
164
- sparse_tensor.print %a2 : tensor <4 x8 xf64 , #DCSR >
165
-
166
- //
167
- // CHECK: ---- Sparse Tensor ----
168
- // CHECK-NEXT: nse = 4
169
- // CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 4
170
- // CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
171
- // CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
172
- // CHECK-NEXT: ----
173
- //
174
- sparse_tensor.print %a3 : tensor <4 x8 xf64 , #CSR >
175
-
176
- //
177
- // CHECK: ---- Sparse Tensor ----
178
- // CHECK-NEXT: nse = 4
179
- // CHECK-NEXT: pos[0] : ( 0, 3
180
- // CHECK-NEXT: crd[0] : ( 0, 2, 3
181
- // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4
182
- // CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
183
- // CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
184
- // CHECK-NEXT: ----
185
- //
186
- sparse_tensor.print %a4 : tensor <4 x8 xf64 , #DCSR >
187
-
188
- //
189
- // CHECK: ---- Sparse Tensor ----
190
- // CHECK-NEXT: nse = 32
191
- // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
192
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
193
- // CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
194
- // CHECK-NEXT: ----
195
- //
196
- sparse_tensor.print %b1 : tensor <8 x4 xf64 , #CSR >
197
-
198
- //
199
- // CHECK: ---- Sparse Tensor ----
200
- // CHECK-NEXT: nse = 32
201
- // CHECK-NEXT: pos[0] : ( 0, 8
202
- // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7
203
- // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
204
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
205
- // CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
206
- // CHECK-NEXT: ----
207
- //
208
- sparse_tensor.print %b2 : tensor <8 x4 xf64 , #DCSR >
209
-
210
- //
211
- // CHECK: ---- Sparse Tensor ----
212
- // CHECK-NEXT: nse = 8
213
- // CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4, 5, 6, 8
214
- // CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
215
- // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
216
- // CHECK-NEXT: ----
217
- //
218
- sparse_tensor.print %b3 : tensor <8 x4 xf64 , #CSR >
219
-
220
- //
221
- // CHECK: ---- Sparse Tensor ----
222
- // CHECK-NEXT: nse = 8
223
- // CHECK-NEXT: pos[0] : ( 0, 7
224
- // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 5, 6, 7
225
- // CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 5, 6, 8
226
- // CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
227
- // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
228
- // CHECK-NEXT: ----
229
- //
230
- sparse_tensor.print %b4 : tensor <8 x4 xf64 , #DCSR >
143
+ // Sanity check on stored entries before going into the computations.
144
+ //
145
+ // CHECK: 32
146
+ // CHECK-NEXT: 32
147
+ // CHECK-NEXT: 4
148
+ // CHECK-NEXT: 4
149
+ // CHECK-NEXT: 32
150
+ // CHECK-NEXT: 32
151
+ // CHECK-NEXT: 8
152
+ // CHECK-NEXT: 8
153
+ //
154
+ %noea1 = sparse_tensor.number_of_entries %a1 : tensor <4 x8 xf64 , #CSR >
155
+ %noea2 = sparse_tensor.number_of_entries %a2 : tensor <4 x8 xf64 , #DCSR >
156
+ %noea3 = sparse_tensor.number_of_entries %a3 : tensor <4 x8 xf64 , #CSR >
157
+ %noea4 = sparse_tensor.number_of_entries %a4 : tensor <4 x8 xf64 , #DCSR >
158
+ %noeb1 = sparse_tensor.number_of_entries %b1 : tensor <8 x4 xf64 , #CSR >
159
+ %noeb2 = sparse_tensor.number_of_entries %b2 : tensor <8 x4 xf64 , #DCSR >
160
+ %noeb3 = sparse_tensor.number_of_entries %b3 : tensor <8 x4 xf64 , #CSR >
161
+ %noeb4 = sparse_tensor.number_of_entries %b4 : tensor <8 x4 xf64 , #DCSR >
162
+ vector.print %noea1 : index
163
+ vector.print %noea2 : index
164
+ vector.print %noea3 : index
165
+ vector.print %noea4 : index
166
+ vector.print %noeb1 : index
167
+ vector.print %noeb2 : index
168
+ vector.print %noeb3 : index
169
+ vector.print %noeb4 : index
231
170
232
171
// Call kernels with dense.
233
172
%0 = call @matmul1 (%da , %db , %zero )
@@ -269,26 +208,24 @@ module {
269
208
call @printMemrefF64 (%u0 ) : (tensor <*xf64 >) -> ()
270
209
271
210
//
272
- // CHECK: ---- Sparse Tensor ----
273
- // CHECK-NEXT: nse = 16
274
- // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
275
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
276
- // CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
277
- // CHECK-NEXT: ----
211
+ // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
212
+ // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
213
+ // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
214
+ // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
278
215
//
279
- sparse_tensor.print %1 : tensor <4 x4 xf64 , #CSR >
216
+ %c1 = sparse_tensor.convert %1 : tensor <4 x4 xf64 , #CSR > to tensor <4 x4 xf64 >
217
+ %c1u = tensor.cast %c1 : tensor <4 x4 xf64 > to tensor <*xf64 >
218
+ call @printMemrefF64 (%c1u ) : (tensor <*xf64 >) -> ()
280
219
281
220
//
282
- // CHECK: ---- Sparse Tensor ----
283
- // CHECK-NEXT: nse = 16
284
- // CHECK-NEXT: pos[0] : ( 0, 4
285
- // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
286
- // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
287
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
288
- // CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
289
- // CHECK-NEXT: ----
221
+ // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
222
+ // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
223
+ // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
224
+ // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
290
225
//
291
- sparse_tensor.print %2 : tensor <4 x4 xf64 , #DCSR >
226
+ %c2 = sparse_tensor.convert %2 : tensor <4 x4 xf64 , #DCSR > to tensor <4 x4 xf64 >
227
+ %c2u = tensor.cast %c2 : tensor <4 x4 xf64 > to tensor <*xf64 >
228
+ call @printMemrefF64 (%c2u ) : (tensor <*xf64 >) -> ()
292
229
293
230
//
294
231
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
@@ -300,26 +237,24 @@ module {
300
237
call @printMemrefF64 (%u3 ) : (tensor <*xf64 >) -> ()
301
238
302
239
//
303
- // CHECK: ---- Sparse Tensor ----
304
- // CHECK-NEXT: nse = 12
305
- // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 12
306
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
307
- // CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
308
- // CHECK-NEXT: ----
240
+ // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
241
+ // CHECK-NEXT: [0, 0, 0, 0],
242
+ // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
243
+ // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
309
244
//
310
- sparse_tensor.print %4 : tensor <4 x4 xf64 , #CSR >
245
+ %c4 = sparse_tensor.convert %4 : tensor <4 x4 xf64 , #CSR > to tensor <4 x4 xf64 >
246
+ %c4u = tensor.cast %c4 : tensor <4 x4 xf64 > to tensor <*xf64 >
247
+ call @printMemrefF64 (%c4u ) : (tensor <*xf64 >) -> ()
311
248
312
249
//
313
- // CHECK: ---- Sparse Tensor ----
314
- // CHECK-NEXT: nse = 12
315
- // CHECK-NEXT: pos[0] : ( 0, 3
316
- // CHECK-NEXT: crd[0] : ( 0, 2, 3
317
- // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12
318
- // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
319
- // CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
320
- // CHECK-NEXT: ----
250
+ // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
251
+ // CHECK-NEXT: [0, 0, 0, 0],
252
+ // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
253
+ // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
321
254
//
322
- sparse_tensor.print %5 : tensor <4 x4 xf64 , #DCSR >
255
+ %c5 = sparse_tensor.convert %5 : tensor <4 x4 xf64 , #DCSR > to tensor <4 x4 xf64 >
256
+ %c5u = tensor.cast %c5 : tensor <4 x4 xf64 > to tensor <*xf64 >
257
+ call @printMemrefF64 (%c5u ) : (tensor <*xf64 >) -> ()
323
258
324
259
//
325
260
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
@@ -331,26 +266,46 @@ module {
331
266
call @printMemrefF64 (%u6 ) : (tensor <*xf64 >) -> ()
332
267
333
268
//
334
- // CHECK: ---- Sparse Tensor ----
335
- // CHECK-NEXT: nse = 5
336
- // CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 5
337
- // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
338
- // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
339
- // CHECK-NEXT: ----
269
+ // CHECK: {{\[}}[0, 30.5, 4.2, 0],
270
+ // CHECK-NEXT: [0, 0, 0, 0],
271
+ // CHECK-NEXT: [0, 0, 4.6, 0],
272
+ // CHECK-NEXT: [0, 0, 7, 8]]
340
273
//
341
- sparse_tensor.print %7 : tensor <4 x4 xf64 , #CSR >
274
+ %c7 = sparse_tensor.convert %7 : tensor <4 x4 xf64 , #CSR > to tensor <4 x4 xf64 >
275
+ %c7u = tensor.cast %c7 : tensor <4 x4 xf64 > to tensor <*xf64 >
276
+ call @printMemrefF64 (%c7u ) : (tensor <*xf64 >) -> ()
342
277
343
278
//
344
- // CHECK: ---- Sparse Tensor ----
345
- // CHECK-NEXT: nse = 5
346
- // CHECK-NEXT: pos[0] : ( 0, 3
347
- // CHECK-NEXT: crd[0] : ( 0, 2, 3
348
- // CHECK-NEXT: pos[1] : ( 0, 2, 3, 5
349
- // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
350
- // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
351
- // CHECK-NEXT: ----
279
+ // CHECK: {{\[}}[0, 30.5, 4.2, 0],
280
+ // CHECK-NEXT: [0, 0, 0, 0],
281
+ // CHECK-NEXT: [0, 0, 4.6, 0],
282
+ // CHECK-NEXT: [0, 0, 7, 8]]
283
+ //
284
+ %c8 = sparse_tensor.convert %8 : tensor <4 x4 xf64 , #DCSR > to tensor <4 x4 xf64 >
285
+ %c8u = tensor.cast %c8 : tensor <4 x4 xf64 > to tensor <*xf64 >
286
+ call @printMemrefF64 (%c8u ) : (tensor <*xf64 >) -> ()
287
+
288
+ //
289
+ // Sanity check on nonzeros.
290
+ //
291
+ // CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
292
+ // CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
293
+ //
294
+ %val7 = sparse_tensor.values %7 : tensor <4 x4 xf64 , #CSR > to memref <?xf64 >
295
+ %val8 = sparse_tensor.values %8 : tensor <4 x4 xf64 , #DCSR > to memref <?xf64 >
296
+ call @printMemref1dF64 (%val7 ) : (memref <?xf64 >) -> ()
297
+ call @printMemref1dF64 (%val8 ) : (memref <?xf64 >) -> ()
298
+
299
+ //
300
+ // Sanity check on stored entries after the computations.
301
+ //
302
+ // CHECK-NEXT: 5
303
+ // CHECK-NEXT: 5
352
304
//
353
- sparse_tensor.print %8 : tensor <4 x4 xf64 , #DCSR >
305
+ %noe7 = sparse_tensor.number_of_entries %7 : tensor <4 x4 xf64 , #CSR >
306
+ %noe8 = sparse_tensor.number_of_entries %8 : tensor <4 x4 xf64 , #DCSR >
307
+ vector.print %noe7 : index
308
+ vector.print %noe8 : index
354
309
355
310
// Release the resources.
356
311
bufferization.dealloc_tensor %a1 : tensor <4 x8 xf64 , #CSR >
@@ -361,6 +316,12 @@ module {
361
316
bufferization.dealloc_tensor %b2 : tensor <8 x4 xf64 , #DCSR >
362
317
bufferization.dealloc_tensor %b3 : tensor <8 x4 xf64 , #CSR >
363
318
bufferization.dealloc_tensor %b4 : tensor <8 x4 xf64 , #DCSR >
319
+ bufferization.dealloc_tensor %c1 : tensor <4 x4 xf64 >
320
+ bufferization.dealloc_tensor %c2 : tensor <4 x4 xf64 >
321
+ bufferization.dealloc_tensor %c4 : tensor <4 x4 xf64 >
322
+ bufferization.dealloc_tensor %c5 : tensor <4 x4 xf64 >
323
+ bufferization.dealloc_tensor %c7 : tensor <4 x4 xf64 >
324
+ bufferization.dealloc_tensor %c8 : tensor <4 x4 xf64 >
364
325
bufferization.dealloc_tensor %0 : tensor <4 x4 xf64 >
365
326
bufferization.dealloc_tensor %1 : tensor <4 x4 xf64 , #CSR >
366
327
bufferization.dealloc_tensor %2 : tensor <4 x4 xf64 , #DCSR >
0 commit comments