Skip to content

Commit 72e6a31

Browse files
committed
[mlir] GEMM Hopper Tensor Core Integration Test
This test aims to validate the correctness of the supported GEMM kernels in NVGPU dialects, with current support for Multistage and Warp Specialization kernels. The test constructs and metaprograms IR using Python bindings, allowing generic IR building. This flexibility enables changes to the shape, tile size, or data type of the GEMM for testing purposes. The entry function is `matmul`, where one can specify GEMM shape, tile size, data type, GEMM algorithm (Multistage or Warp Specialization), and the maximum number of stages. Verification is done via numpy's matmul operation. Example: ``` matmul(input_type=np.float16, # input types output_type=np.float32, # output type M=4096, N=4096, K=4096, # Shape BLOCK_M=128, BLOCK_N=128, BLOCK_K=64, # Tile Size use_warp_specialization=True, # Enable Warp Specialization max_num_stages=3) # Number of stages in shared memory ``` ### Parallelism Across CTAs GEMM includes three loops defining the shape of the GEMM, specified in the `matmul` function. The program builds IR using the following loop structure, tiling the loops with the given tile size and parallelizing the two outermost loops into the first and second dimensions of CTAs. ``` for(bi = 0; i < M; i += BLOCK_M) # parallelize across blockIdx.x for(bj = 0; j < N; j += BLOCK_N) # parallelize across blockIdx.y for(bk = 0; k < K; K += BLOCK_K) for(i = bi; i < (bi + BLOCK_M); ++i) for(j = bj; j < (bj + BLOCK_N); ++j) for(k = bk; k < (bk + BLOCK_K); ++k) ``` ## Multistage Kernel This kernel launches a single warp group (128 threads). The primary thread (pthread) requests load from TMA. Threads collectively wait for the data and perform mma operations. After completing the shape, threads together store first fragmented registers to shared memory, then from shared memory to global memory; this part is called the epilogue. Execution Timeline of Multistage Kernel with 3 stages: ``` +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ | |Prologue ----> |MainLoop ----> |Epilogue | +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |pthread|[tma-0,1,2] |[wait-0][mma][tma-2]|[wait-1][mma][tma-0]|[wait-2][mma][tma-1]| ... | [mma-wait] |[epilogue]| |wgroup | ........ |[wait-0][mma] |[wait-1][mma] |[wait-2][mma] | ... | [mma-wait] |[epilogue]| +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ ``` ## Warp Specialization Kernel This kernel launches 2 warp groups (2x128 threads) per CTA, specializing one as `producer warp group` and another as `consumer warp group`. The `producer warp group` is responsible for requesting TMA load, while the `consumer warp group` performs the mma operation. The epilogue section is handled by the `consumer warp group` as its threads own the fragmented registers. Execution Timeline of Warp Specialization Kernel with 2 stages: ``` +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ | |MainLoop ----> | 1st Epilogue | 2nd Epilogue | +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |pthread1|[tma-0] | [tma-1] | [tma-0] | [tma-1] | ..........................| ........... | [shmem->global] | |wgroup1 | .......| | | | | | [shmem->global] | +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |wgroup2 |[wait-0][mma], [wait-1][mma], [wait-0][mma], [wait-1][mma], ......| [reg->shmem] | [shmem->global]| +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ ```
1 parent 5b01522 commit 72e6a31

File tree

5 files changed

+911
-0
lines changed

5 files changed

+911
-0
lines changed
Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
if not config.enable_cuda_runner or not config.mlir_run_cuda_sm90_tests:
2+
config.unsupported = True
Lines changed: 186 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,186 @@
1+
# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
2+
# RUN: %PYTHON %s | FileCheck %s
3+
# CHECK: PASS
4+
5+
# ===--- GEMM Hopper Tensor Core Integration Test ---===
6+
#
7+
# This test aims to validate the correctness of the supported GEMM kernels in
8+
# NVGPU dialects, with current support for Multistage and Warp Specialization
9+
# kernels.
10+
# The test constructs and metaprograms IR using Python bindings, allowing
11+
# generic IR building. This flexibility enables changes to the shape,
12+
# tile size, or data type of the GEMM for testing purposes.
13+
# The entry function is `matmul`, where one can specify GEMM shape, tile size,
14+
# data type, GEMM algorithm (Multistage or Warp Specialization), and the maximum
15+
# number of stages.
16+
# Verification is done via numpy's matmul operation.
17+
#
18+
# Example:
19+
# matmul(input_type=np.float16, # input types
20+
# output_type=np.float32, # output type
21+
# M=4096, N=4096, K=4096, # Shape
22+
# BLOCK_M=128, BLOCK_N=128, BLOCK_K=64, # Tile Size
23+
# use_warp_specialization=True, # Enable Warp Specialization
24+
# max_num_stages=3) # Number of stages in shared memory
25+
#
26+
# ===--- Parallelism Across CTAs ---===
27+
#
28+
# GEMM includes three loops defining the shape of the GEMM, specified in the
29+
# `matmul` function.
30+
# The program builds IR using the following loop structure, tiling the loops
31+
# with the given tile size and parallelizing the two outermost loops into the
32+
# first and second dimensions of CTAs.
33+
#
34+
# for(bi = 0; i < M; i += BLOCK_M) # parallelize across blockIdx.x
35+
# for(bj = 0; j < N; j += BLOCK_N) # parallelize across blockIdx.y
36+
# for(bk = 0; k < K; K += BLOCK_K)
37+
# for(i = bi; i < (bi + BLOCK_M); ++i)
38+
# for(j = bj; j < (bj + BLOCK_N); ++j)
39+
# for(k = bk; k < (bk + BLOCK_K); ++k)
40+
#
41+
# ===--- Multistage Kernel ---===
42+
#
43+
# This kernel launches a single warp group (128 threads). The primary thread
44+
# (pthread) requests load from TMA. Threads collectively wait for the data and
45+
# perform mma operations. After completing the shape, threads together store
46+
# first fragmented registers to shared memory, then from shared memory to global
47+
# memory; this part is called the epilogue.
48+
#
49+
# Execution Timeline of Multistage Kernel with 3 stages:
50+
# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+
51+
# | |Prologue ----> |MainLoop ----> |Epilogue |
52+
# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+
53+
# |pthread|[tma-0,1,2] |[wait-0][mma][tma-2]|[wait-1][mma][tma-0]|[wait-2][mma][tma-1]| ... | [mma-wait] |[epilogue]|
54+
# |wgroup | ........ |[wait-0][mma] |[wait-1][mma] |[wait-2][mma] | ... | [mma-wait] |[epilogue]|
55+
# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+
56+
#
57+
# ===--- Warp Specialization Kernel ---===
58+
#
59+
# This kernel launches 2 warp groups (2x128 threads) per CTA, specializing one
60+
# as `producer warp group` and another as `consumer warp group`. The
61+
# `producer warp group` is responsible for requesting TMA load, while the
62+
# `consumer warp group` performs the mma operation. The epilogue section is
63+
# handled by the `consumer warp group` as its threads own the fragmented registers.
64+
#
65+
# Execution Timeline of Warp Specialization Kernel with 2 stages:
66+
# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+
67+
# | |MainLoop ----> | 1st Epilogue | 2nd Epilogue |
68+
# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+
69+
# |pthread1|[tma-0] | [tma-1] | [tma-0] | [tma-1] | ..........................| ........... | [shmem->global] |
70+
# |wgroup1 | .......| | | | | | [shmem->global] |
71+
# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+
72+
# |wgroup2 |[wait-0][mma], [wait-1][mma], [wait-0][mma], [wait-1][mma], ......| [reg->shmem] | [shmem->global]|
73+
# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+
74+
75+
import errno
76+
import numpy as np
77+
import subprocess
78+
import ctypes
79+
from tools import nvgpucompiler
80+
from tools import matmulBuilder
81+
import contextlib
82+
import os
83+
import sys
84+
import pathlib
85+
import ctypes
86+
from mlir import runtime as rt
87+
88+
def generate_matmul(input_type=np.float16,
89+
output_type=np.float32,
90+
M=4096,
91+
N=4096,
92+
K=4096,
93+
BLOCK_M=128,
94+
BLOCK_N=128,
95+
BLOCK_K=64,
96+
use_warp_specilization=True,
97+
saveIR=False,
98+
max_num_stages=3):
99+
with matmulBuilder.ir.Context() as ctx, matmulBuilder.ir.Location.unknown():
100+
if use_warp_specilization:
101+
mlir_nvgpu_module = matmulBuilder.generate_matmul_ws(input_type, output_type, M, N, K, BLOCK_M, BLOCK_N,
102+
BLOCK_K, max_num_stages)
103+
else:
104+
mlir_nvgpu_module = matmulBuilder.generate_matmul_multistage(input_type, output_type, M, N, K, BLOCK_M,
105+
BLOCK_N, BLOCK_K, max_num_stages)
106+
107+
mlir_nvgpu_module.operation.verify()
108+
109+
# Save generated IR
110+
if saveIR:
111+
# print(mlir_nvgpu_module)
112+
original_stdout = sys.stdout
113+
with open('gemm.mlir', 'w') as f:
114+
sys.stdout = f
115+
print(mlir_nvgpu_module)
116+
sys.stdout = original_stdout
117+
118+
# Get compiler
119+
options = f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3"
120+
support_lib = os.getenv("SUPPORT_LIB")
121+
if not os.path.exists(support_lib):
122+
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
123+
compiler = nvgpucompiler.NvgpuCompiler(options, opt_level=3, shared_libs=[support_lib])
124+
125+
# Compile
126+
engine = compiler.compile_and_jit(mlir_nvgpu_module)
127+
return engine
128+
129+
130+
def matmul(input_type=np.float16,
131+
output_type=np.float32,
132+
M=128,
133+
N=128,
134+
K=128,
135+
BLOCK_M=128,
136+
BLOCK_N=128,
137+
BLOCK_K=64,
138+
use_warp_specilization=True,
139+
saveIR=False,
140+
max_num_stages=3,
141+
print_results=False,
142+
no_verify=False):
143+
# Print the configuration
144+
ity = "f16" if input_type == np.float16 else "f32"
145+
oty = "f16" if output_type == np.float16 else "f32"
146+
gemmty = "Warp Specilization" if use_warp_specilization else "Multistage"
147+
print("===-- Running GEMM " + gemmty + " " + oty + " += " + ity + " * " + ity + ", Size " + str(M) + "x" + str(N) +
148+
"x" + str(K) + ", Tile " + str(BLOCK_M) + "x" + str(BLOCK_N) + "x" + str(BLOCK_K) + ", stages " +
149+
str(max_num_stages) + " --===")
150+
151+
# Build IR and compile
152+
engine = generate_matmul(input_type, output_type, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K, use_warp_specilization,
153+
saveIR, max_num_stages)
154+
155+
# Allocate matrices and invoke the matmul
156+
c = np.zeros((M, N), output_type)
157+
a = np.random.randn(M, K).astype(input_type)
158+
b = np.random.randn(K, N).astype(input_type)
159+
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
160+
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
161+
mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
162+
kernelName = "mlir_matmul_warpspecialized" if use_warp_specilization else "mlir_matmul_multistage"
163+
164+
# Launch the MLIR generated kernel
165+
engine.invoke(kernelName, mem_a, mem_b, mem_c)
166+
167+
float_formatter = "{:.2f}".format
168+
np.set_printoptions(formatter={'float_kind': float_formatter})
169+
170+
if print_results:
171+
print(c)
172+
173+
# Verify the results
174+
if not no_verify:
175+
ref = a.astype(input_type) @ b.astype(input_type)
176+
if print_results:
177+
print(ref)
178+
np.testing.assert_allclose(c, ref, rtol=5e-03, atol=1e-01)
179+
180+
print("PASS ")
181+
182+
183+
# GEMM Multistage f32 += f16 * f16
184+
matmul(np.float16, np.float32, 128, 128, 4096, max_num_stages=3, use_warp_specilization=False)
185+
# GEMM Warp Specilized f32 += f16 * f16
186+
matmul(np.float16, np.float32, 256, 1024, 512, max_num_stages=3, use_warp_specilization=True)
Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
# Files in this directory are tools, not tests.
2+
config.unsupported = True
3+

0 commit comments

Comments
 (0)