|
| 1 | +//===-- amdgpu floating point env manipulation functions --------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_AMDGPU_FENVIMPL_H |
| 10 | +#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_AMDGPU_FENVIMPL_H |
| 11 | + |
| 12 | +#include "src/__support/GPU/utils.h" |
| 13 | +#include "src/__support/macros/attributes.h" |
| 14 | +#include "src/__support/macros/properties/architectures.h" |
| 15 | + |
| 16 | +#if !defined(LIBC_TARGET_ARCH_IS_AMDGPU) |
| 17 | +#error "Invalid include" |
| 18 | +#endif |
| 19 | + |
| 20 | +#include <fenv.h> |
| 21 | +#include <stdint.h> |
| 22 | + |
| 23 | +namespace LIBC_NAMESPACE { |
| 24 | +namespace fputil { |
| 25 | + |
| 26 | +namespace internal { |
| 27 | + |
| 28 | +// Gets the immediate argument to access the AMDGPU hardware register. The |
| 29 | +// register access is encoded in a 16-bit immediate value according to the |
| 30 | +// following layout. |
| 31 | +// |
| 32 | +// ┌──────────────┬──────────────┬───────────────┐ |
| 33 | +// │ SIZE[15:11] │ OFFSET[10:6] │ ID[5:0] │ |
| 34 | +// └──────────────┴──────────────┴───────────────┘ |
| 35 | +// |
| 36 | +// This will read the size number of bits starting at the offset bit from the |
| 37 | +// corresponding hardware register ID. |
| 38 | +constexpr uint16_t get_register(uint8_t id, uint8_t offset, uint8_t size) { |
| 39 | + return static_cast<uint16_t>(size << 11 | offset << 6 | id); |
| 40 | +} |
| 41 | + |
| 42 | +// Integral identifiers for the relevant hardware registers. |
| 43 | +enum Register : uint16_t { |
| 44 | + // The mode register controls the floating point behaviour of the device. It |
| 45 | + // can be read or written to by the kernel during runtime It is laid out as a |
| 46 | + // bit field with the following offsets and sizes listed for the relevant |
| 47 | + // entries. |
| 48 | + // |
| 49 | + // ┌─────┬─────────────┬─────┬─────────┬──────────┬─────────────┬────────────┐ |
| 50 | + // │ ... │ EXCP[20:12] │ ... │ IEEE[9] │ CLAMP[8] │ DENOMR[7:4] │ ROUND[3:0] │ |
| 51 | + // └─────┴─────────────┴─────┴─────────┴──────────┴─────────────┴────────────┘ |
| 52 | + // |
| 53 | + // The rounding mode and denormal modes both control f64/f16 and f32 precision |
| 54 | + // operations separately with two bits. The accepted values for the rounding |
| 55 | + // mode are nearest, upward, downward, and toward given 0, 1, 2, and 3 |
| 56 | + // respectively. |
| 57 | + // |
| 58 | + // The CLAMP bit indicates that DirectX 10 handling of NaNs is enabled in the |
| 59 | + // vector ALU. When set this will clamp NaN values to zero and pass them |
| 60 | + // otherwise. A hardware bug causes this bit to prevent floating exceptions |
| 61 | + // from being recorded if this bit is set on all generations before GFX12. |
| 62 | + // |
| 63 | + // The IEEE bit controls whether or not floating point operations supporting |
| 64 | + // exception gathering are IEEE 754-2008 compliant. |
| 65 | + // |
| 66 | + // The EXCP field indicates which exceptions will cause the instruction to |
| 67 | + // take a trap if traps are enabled, see the status register. The bit layout |
| 68 | + // is identical to that in the trap status register. We are only concerned |
| 69 | + // with the first six bits and ignore the other three. |
| 70 | + HW_REG_MODE = 1, |
| 71 | + HW_REG_MODE_ROUND = get_register(HW_REG_MODE, 0, 4), |
| 72 | + HW_REG_MODE_CLAMP = get_register(HW_REG_MODE, 8, 1), |
| 73 | + HW_REG_MODE_EXCP = get_register(HW_REG_MODE, 12, 6), |
| 74 | + |
| 75 | + // The status register is a read-only register that contains information about |
| 76 | + // how the kernel was launched. The sixth bit TRAP_EN[6] indicates whether or |
| 77 | + // not traps are enabled for this kernel. If this bit is set along with the |
| 78 | + // corresponding bit in the mode register then a trap will be taken. |
| 79 | + HW_REG_STATUS = 2, |
| 80 | + HW_REG_STATUS_TRAP_EN = get_register(HW_REG_STATUS, 6, 1), |
| 81 | + |
| 82 | + // The trap status register contains information about the status of the |
| 83 | + // exceptions. These bits are accumulated regarless of trap handling statuss |
| 84 | + // and are sticky until cleared. |
| 85 | + // |
| 86 | + // 5 4 3 2 1 0 |
| 87 | + // ┌─────────┬───────────┬──────────┬────────────────┬──────────┬─────────┐ |
| 88 | + // │ Inexact │ Underflow │ Overflow │ Divide by zero │ Denormal │ Invalid │ |
| 89 | + // └─────────┴───────────┴──────────┴────────────────┴──────────┴─────────┘ |
| 90 | + // |
| 91 | + // These exceptions indicate that at least one lane in the current wavefront |
| 92 | + // signalled an floating point exception. There is no way to increase the |
| 93 | + // granularity. |
| 94 | + HW_REG_TRAPSTS = 3, |
| 95 | + HW_REG_TRAPSTS_EXCP = get_register(HW_REG_TRAPSTS, 0, 6), |
| 96 | +}; |
| 97 | + |
| 98 | +// The six bits used to encode the standard floating point exceptions in the |
| 99 | +// trap status register. |
| 100 | +enum ExceptionFlags : uint32_t { |
| 101 | + EXCP_INVALID_F = 0x1, |
| 102 | + EXCP_DENORMAL_F = 0x2, |
| 103 | + EXCP_DIV_BY_ZERO_F = 0x4, |
| 104 | + EXCP_OVERFLOW_F = 0x8, |
| 105 | + EXCP_UNDERFLOW_F = 0x10, |
| 106 | + EXCP_INEXACT_F = 0x20, |
| 107 | +}; |
| 108 | + |
| 109 | +// The two bit encoded rounding modes used in the mode register. |
| 110 | +enum RoundingFlags : uint32_t { |
| 111 | + ROUND_TO_NEAREST = 0x0, |
| 112 | + ROUND_UPWARD = 0x1, |
| 113 | + ROUND_DOWNWARD = 0x2, |
| 114 | + ROUND_TOWARD_ZERO = 0x3, |
| 115 | +}; |
| 116 | + |
| 117 | +// Exception flags are individual bits in the corresponding hardware register. |
| 118 | +// This converts between the exported C standard values and the hardware values. |
| 119 | +LIBC_INLINE uint32_t get_status_value_for_except(uint32_t excepts) { |
| 120 | + return (excepts & FE_INVALID ? EXCP_INVALID_F : 0) | |
| 121 | +#ifdef __FE_DENORM |
| 122 | + (excepts & __FE_DENORM ? EXCP_DENORMAL_F : 0) | |
| 123 | +#endif // __FE_DENORM |
| 124 | + (excepts & FE_DIVBYZERO ? EXCP_DIV_BY_ZERO_F : 0) | |
| 125 | + (excepts & FE_OVERFLOW ? EXCP_OVERFLOW_F : 0) | |
| 126 | + (excepts & FE_UNDERFLOW ? EXCP_UNDERFLOW_F : 0) | |
| 127 | + (excepts & FE_INEXACT ? EXCP_INEXACT_F : 0); |
| 128 | +} |
| 129 | + |
| 130 | +LIBC_INLINE uint32_t get_except_value_for_status(uint32_t status) { |
| 131 | + return (status & EXCP_INVALID_F ? FE_INVALID : 0) | |
| 132 | +#ifdef __FE_DENORM |
| 133 | + (status & EXCP_DENORMAL_F ? __FE_DENORM : 0) | |
| 134 | +#endif // __FE_DENORM |
| 135 | + (status & EXCP_DIV_BY_ZERO_F ? FE_DIVBYZERO : 0) | |
| 136 | + (status & EXCP_OVERFLOW_F ? FE_OVERFLOW : 0) | |
| 137 | + (status & EXCP_UNDERFLOW_F ? FE_UNDERFLOW : 0) | |
| 138 | + (status & EXCP_INEXACT_F ? FE_INEXACT : 0); |
| 139 | +} |
| 140 | + |
| 141 | +// FIXME: These require the 'noinline' attribute to pessimistically flush the |
| 142 | +// state. Otherwise, reading from the register may return stale results. |
| 143 | + |
| 144 | +// Access the six bits in the trap status register for the floating point |
| 145 | +// exceptions. |
| 146 | +[[gnu::noinline]] LIBC_INLINE void set_trap_status(uint32_t status) { |
| 147 | + uint32_t val = gpu::broadcast_value(gpu::get_lane_mask(), status); |
| 148 | + __builtin_amdgcn_s_setreg(HW_REG_TRAPSTS_EXCP, val); |
| 149 | +} |
| 150 | + |
| 151 | +[[gnu::noinline]] LIBC_INLINE uint32_t get_trap_status() { |
| 152 | + return __builtin_amdgcn_s_getreg(HW_REG_TRAPSTS_EXCP); |
| 153 | +} |
| 154 | + |
| 155 | +// Access the six bits in the mode register that control which exceptions will |
| 156 | +// result in a trap being taken. Uses the same flags as the status register. |
| 157 | +[[gnu::noinline]] LIBC_INLINE void set_enabled_trap(uint32_t flags) { |
| 158 | + uint32_t val = gpu::broadcast_value(gpu::get_lane_mask(), flags); |
| 159 | + __builtin_amdgcn_s_setreg(HW_REG_MODE_EXCP, val); |
| 160 | +} |
| 161 | + |
| 162 | +[[gnu::noinline]] LIBC_INLINE uint32_t get_enabled_trap() { |
| 163 | + return __builtin_amdgcn_s_getreg(HW_REG_MODE_EXCP); |
| 164 | +} |
| 165 | + |
| 166 | +// Access the four bits in the mode register's ROUND[3:0] field. The hardware |
| 167 | +// supports setting the f64/f16 and f32 precision rounding modes separately but |
| 168 | +// we will assume that these always match. |
| 169 | +[[gnu::noinline]] LIBC_INLINE void set_rounding_mode(uint32_t flags) { |
| 170 | + uint32_t val = gpu::broadcast_value(gpu::get_lane_mask(), flags); |
| 171 | + __builtin_amdgcn_s_setreg(HW_REG_MODE_ROUND, val << 2 | val); |
| 172 | +} |
| 173 | + |
| 174 | +[[gnu::noinline]] LIBC_INLINE uint32_t get_rounding_mode() { |
| 175 | + return __builtin_amdgcn_s_getreg(HW_REG_MODE_ROUND) & 0x3; |
| 176 | +} |
| 177 | + |
| 178 | +// NOTE: On architectures before GFX12 the DX10_CLAMP bit supresses all floating |
| 179 | +// point exceptions. In order to get them to be presented we need to |
| 180 | +// manually set if off. |
| 181 | +[[gnu::noinline]] LIBC_INLINE void set_clamp_low() { |
| 182 | + __builtin_amdgcn_s_setreg(HW_REG_MODE_CLAMP, 0); |
| 183 | +} |
| 184 | + |
| 185 | +[[gnu::noinline]] LIBC_INLINE void set_clamp_high() { |
| 186 | + __builtin_amdgcn_s_setreg(HW_REG_MODE_CLAMP, 1); |
| 187 | +} |
| 188 | + |
| 189 | +} // namespace internal |
| 190 | + |
| 191 | +LIBC_INLINE int clear_except(int excepts) { |
| 192 | + uint32_t status = internal::get_status_value_for_except(excepts); |
| 193 | + uint32_t invert = ~status & 0x3f; |
| 194 | + uint32_t active = internal::get_trap_status(); |
| 195 | + internal::set_trap_status(active & invert); |
| 196 | + return 0; |
| 197 | +} |
| 198 | + |
| 199 | +LIBC_INLINE int test_except(int excepts) { |
| 200 | + uint32_t status = internal::get_status_value_for_except(excepts); |
| 201 | + uint32_t active = internal::get_trap_status(); |
| 202 | + return internal::get_except_value_for_status(active) & status; |
| 203 | +} |
| 204 | + |
| 205 | +LIBC_INLINE int get_except() { return internal::get_trap_status(); } |
| 206 | + |
| 207 | +LIBC_INLINE int set_except(int excepts) { |
| 208 | + internal::set_trap_status(internal::get_status_value_for_except(excepts)); |
| 209 | + return 0; |
| 210 | +} |
| 211 | + |
| 212 | +LIBC_INLINE int enable_except(int excepts) { |
| 213 | + uint32_t status = internal::get_status_value_for_except(excepts); |
| 214 | + uint32_t active = internal::get_trap_status(); |
| 215 | + internal::set_enabled_trap(status); |
| 216 | + return internal::get_except_value_for_status(active); |
| 217 | +} |
| 218 | + |
| 219 | +LIBC_INLINE int disable_except(int excepts) { |
| 220 | + uint32_t status = internal::get_status_value_for_except(excepts); |
| 221 | + uint32_t invert = ~status & 0x3f; |
| 222 | + uint32_t active = internal::get_enabled_trap(); |
| 223 | + internal::set_enabled_trap(active & invert); |
| 224 | + return active; |
| 225 | +} |
| 226 | + |
| 227 | +LIBC_INLINE int raise_except(int excepts) { |
| 228 | + uint32_t status = internal::get_status_value_for_except(excepts); |
| 229 | + enable_except(status); |
| 230 | + internal::set_trap_status(status); |
| 231 | + return 0; |
| 232 | +} |
| 233 | + |
| 234 | +LIBC_INLINE int get_round() { |
| 235 | + switch (internal::get_rounding_mode()) { |
| 236 | + case internal::ROUND_TO_NEAREST: |
| 237 | + return FE_TONEAREST; |
| 238 | + case internal::ROUND_UPWARD: |
| 239 | + return FE_UPWARD; |
| 240 | + case internal::ROUND_DOWNWARD: |
| 241 | + return FE_DOWNWARD; |
| 242 | + case internal::ROUND_TOWARD_ZERO: |
| 243 | + return FE_TOWARDZERO; |
| 244 | + } |
| 245 | + __builtin_unreachable(); |
| 246 | +} |
| 247 | + |
| 248 | +LIBC_INLINE int set_round(int rounding_mode) { |
| 249 | + switch (rounding_mode) { |
| 250 | + case FE_TONEAREST: |
| 251 | + internal::set_rounding_mode(internal::ROUND_TO_NEAREST); |
| 252 | + break; |
| 253 | + case FE_UPWARD: |
| 254 | + internal::set_rounding_mode(internal::ROUND_UPWARD); |
| 255 | + break; |
| 256 | + case FE_DOWNWARD: |
| 257 | + internal::set_rounding_mode(internal::ROUND_DOWNWARD); |
| 258 | + break; |
| 259 | + case FE_TOWARDZERO: |
| 260 | + internal::set_rounding_mode(internal::ROUND_TOWARD_ZERO); |
| 261 | + break; |
| 262 | + default: |
| 263 | + return 1; |
| 264 | + } |
| 265 | + return 0; |
| 266 | +} |
| 267 | + |
| 268 | +// The fenv_t struct for the AMD GPU is simply a 32-bit integer field of the |
| 269 | +// current state. We combine the four bits for the rounding mode with the six |
| 270 | +// bits for the exception state and the six bits for the enabled exceptions. |
| 271 | +// |
| 272 | +// ┌────────────────────────────┬─────────────────┬─────────────┬─────────────┐ |
| 273 | +// │ UNUSED[31:16] │ ENABLED[15:10] │ STATUS[9:4] │ ROUND[3:0] │ |
| 274 | +// └────────────────────────────┴─────────────────┴─────────────┴─────────────┘ |
| 275 | +// |
| 276 | +// The top sixteen bits are currently unused and should be zero. |
| 277 | +LIBC_INLINE int get_env(fenv_t *env) { |
| 278 | + if (!env) |
| 279 | + return 1; |
| 280 | + |
| 281 | + uint32_t rounding = internal::get_rounding_mode(); |
| 282 | + uint32_t status = internal::get_trap_status(); |
| 283 | + uint32_t enabled = internal::get_enabled_trap(); |
| 284 | + env->__fpc = enabled << 10 | status << 4 | rounding; |
| 285 | + return 0; |
| 286 | +} |
| 287 | + |
| 288 | +LIBC_INLINE int set_env(const fenv_t *env) { |
| 289 | + if (!env) |
| 290 | + return 1; |
| 291 | + |
| 292 | + internal::set_rounding_mode(env->__fpc & 0xf); |
| 293 | + internal::set_trap_status((env->__fpc >> 4) & 0x3f); |
| 294 | + internal::set_enabled_trap((env->__fpc >> 10) & 0x3f); |
| 295 | + return 0; |
| 296 | +} |
| 297 | + |
| 298 | +} // namespace fputil |
| 299 | +} // namespace LIBC_NAMESPACE |
| 300 | + |
| 301 | +#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_AMDGPU_FENVIMPL_H |
0 commit comments