@@ -290,7 +290,7 @@ static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
290
290
cl::desc(" A flag that overrides the target's max interleave factor for "
291
291
" vectorized loops." ));
292
292
293
- static cl::opt<unsigned > ForceTargetInstructionCost (
293
+ cl::opt<unsigned > ForceTargetInstructionCost (
294
294
" force-target-instruction-cost" , cl::init(0 ), cl::Hidden,
295
295
cl::desc(" A flag that overrides the target's expected cost for "
296
296
" an instruction to a single constant value. Mostly "
@@ -412,14 +412,6 @@ static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
412
412
return DL.getTypeAllocSizeInBits (Ty) != DL.getTypeSizeInBits (Ty);
413
413
}
414
414
415
- // / A helper function that returns the reciprocal of the block probability of
416
- // / predicated blocks. If we return X, we are assuming the predicated block
417
- // / will execute once for every X iterations of the loop header.
418
- // /
419
- // / TODO: We should use actual block probability here, if available. Currently,
420
- // / we always assume predicated blocks have a 50% chance of executing.
421
- static unsigned getReciprocalPredBlockProb () { return 2 ; }
422
-
423
415
// / Returns "best known" trip count for the specified loop \p L as defined by
424
416
// / the following procedure:
425
417
// / 1) Returns exact trip count if it is known.
@@ -1621,6 +1613,16 @@ class LoopVectorizationCostModel {
1621
1613
// / \p VF is the vectorization factor chosen for the original loop.
1622
1614
bool isEpilogueVectorizationProfitable (const ElementCount VF) const ;
1623
1615
1616
+ // / Return the cost of instructions in an inloop reduction pattern, if I is
1617
+ // / part of that pattern.
1618
+ std::optional<InstructionCost>
1619
+ getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1620
+ TTI::TargetCostKind CostKind) const ;
1621
+
1622
+ // / Returns the execution time cost of an instruction for a given vector
1623
+ // / width. Vector width of one means scalar.
1624
+ VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1625
+
1624
1626
private:
1625
1627
unsigned NumPredStores = 0 ;
1626
1628
@@ -1646,21 +1648,11 @@ class LoopVectorizationCostModel {
1646
1648
// / of elements.
1647
1649
ElementCount getMaxLegalScalableVF (unsigned MaxSafeElements);
1648
1650
1649
- // / Returns the execution time cost of an instruction for a given vector
1650
- // / width. Vector width of one means scalar.
1651
- VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1652
-
1653
1651
// / The cost-computation logic from getInstructionCost which provides
1654
1652
// / the vector type as an output parameter.
1655
1653
InstructionCost getInstructionCost (Instruction *I, ElementCount VF,
1656
1654
Type *&VectorTy);
1657
1655
1658
- // / Return the cost of instructions in an inloop reduction pattern, if I is
1659
- // / part of that pattern.
1660
- std::optional<InstructionCost>
1661
- getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1662
- TTI::TargetCostKind CostKind) const ;
1663
-
1664
1656
// / Calculate vectorization cost of memory instruction \p I.
1665
1657
InstructionCost getMemoryInstructionCost (Instruction *I, ElementCount VF);
1666
1658
@@ -7288,7 +7280,10 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7288
7280
if (!MaxFactors.hasVector ())
7289
7281
return VectorizationFactor::Disabled ();
7290
7282
7291
- // Select the optimal vectorization factor.
7283
+ // Select the optimal vectorization factor according to the legacy cost-model.
7284
+ // This is now only used to verify the decisions by the new VPlan-based
7285
+ // cost-model and will be retired once the VPlan-based cost-model is
7286
+ // stabilized.
7292
7287
VectorizationFactor VF = selectVectorizationFactor (VFCandidates);
7293
7288
assert ((VF.Width .isScalar () || VF.ScalarCost > 0 ) && " when vectorizing, the scalar cost must be non-zero." );
7294
7289
if (!hasPlanWithVF (VF.Width )) {
@@ -7299,6 +7294,182 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7299
7294
return VF;
7300
7295
}
7301
7296
7297
+ InstructionCost VPCostContext::getLegacyCost (Instruction *UI,
7298
+ ElementCount VF) const {
7299
+ return CM.getInstructionCost (UI, VF).first ;
7300
+ }
7301
+
7302
+ bool VPCostContext::skipCostComputation (Instruction *UI, bool IsVector) const {
7303
+ return (IsVector && CM.VecValuesToIgnore .contains (UI)) ||
7304
+ SkipCostComputation.contains (UI);
7305
+ }
7306
+
7307
+ InstructionCost LoopVectorizationPlanner::cost (VPlan &Plan,
7308
+ ElementCount VF) const {
7309
+ InstructionCost Cost = 0 ;
7310
+ LLVMContext &LLVMCtx = OrigLoop->getHeader ()->getContext ();
7311
+ VPCostContext CostCtx (CM.TTI , Legal->getWidestInductionType (), LLVMCtx, CM);
7312
+
7313
+ // Cost modeling for inductions is inaccurate in the legacy cost model
7314
+ // compared to the recipes that are generated. To match here initially during
7315
+ // VPlan cost model bring up directly use the induction costs from the legacy
7316
+ // cost model. Note that we do this as pre-processing; the VPlan may not have
7317
+ // any recipes associated with the original induction increment instruction
7318
+ // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
7319
+ // the cost of both induction increment instructions that are represented by
7320
+ // recipes and those that are not, to avoid distinguishing between them here,
7321
+ // and skip all recipes that represent induction increments (the former case)
7322
+ // later on, if they exist, to avoid counting them twice. Similarly we
7323
+ // pre-compute the cost of any optimized truncates.
7324
+ // TODO: Switch to more accurate costing based on VPlan.
7325
+ for (const auto &[IV, IndDesc] : Legal->getInductionVars ()) {
7326
+ Instruction *IVInc = cast<Instruction>(
7327
+ IV->getIncomingValueForBlock (OrigLoop->getLoopLatch ()));
7328
+ if (CostCtx.SkipCostComputation .insert (IVInc).second ) {
7329
+ InstructionCost InductionCost = CostCtx.getLegacyCost (IVInc, VF);
7330
+ LLVM_DEBUG ({
7331
+ dbgs () << " Cost of " << InductionCost << " for VF " << VF
7332
+ << " :\n induction increment " << *IVInc << " \n " ;
7333
+ IVInc->dump ();
7334
+ });
7335
+ Cost += InductionCost;
7336
+ }
7337
+ for (User *U : IV->users ()) {
7338
+ auto *CI = cast<Instruction>(U);
7339
+ if (!CostCtx.CM .isOptimizableIVTruncate (CI, VF))
7340
+ continue ;
7341
+ assert (!CostCtx.SkipCostComputation .contains (CI) &&
7342
+ " Same cast for multiple inductions?" );
7343
+ CostCtx.SkipCostComputation .insert (CI);
7344
+ InstructionCost CastCost = CostCtx.getLegacyCost (CI, VF);
7345
+ LLVM_DEBUG ({
7346
+ dbgs () << " Cost of " << CastCost << " for VF " << VF
7347
+ << " :\n induction cast " << *CI << " \n " ;
7348
+ CI->dump ();
7349
+ });
7350
+ Cost += CastCost;
7351
+ }
7352
+ }
7353
+
7354
+ // / Compute the cost of all exiting conditions of the loop using the legacy
7355
+ // / cost model. This is to match the legacy behavior, which adds the cost of
7356
+ // / all exit conditions. Note that this over-estimates the cost, as there will
7357
+ // / be a single condition to control the vector loop.
7358
+ SmallVector<BasicBlock *> Exiting;
7359
+ CM.TheLoop ->getExitingBlocks (Exiting);
7360
+ // Add the cost of all exit conditions.
7361
+ for (BasicBlock *EB : Exiting) {
7362
+ auto *Term = dyn_cast<BranchInst>(EB->getTerminator ());
7363
+ if (!Term)
7364
+ continue ;
7365
+ if (auto *CondI = dyn_cast<Instruction>(Term->getOperand (0 ))) {
7366
+ assert (!CostCtx.SkipCostComputation .contains (CondI) &&
7367
+ " Condition already skipped?" );
7368
+ CostCtx.SkipCostComputation .insert (CondI);
7369
+ Cost += CostCtx.getLegacyCost (CondI, VF);
7370
+ }
7371
+ }
7372
+
7373
+ // The legacy cost model has special logic to compute the cost of in-loop
7374
+ // reductions, which may be smaller than the sum of all instructions involved
7375
+ // in the reduction. For AnyOf reductions, VPlan codegen may remove the select
7376
+ // which the legacy cost model uses to assign cost. Pre-compute their costs
7377
+ // for now.
7378
+ // TODO: Switch to costing based on VPlan once the logic has been ported.
7379
+ for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars ()) {
7380
+ if (!CM.isInLoopReduction (RedPhi) &&
7381
+ !RecurrenceDescriptor::isAnyOfRecurrenceKind (
7382
+ RdxDesc.getRecurrenceKind ()))
7383
+ continue ;
7384
+
7385
+ // AnyOf reduction codegen may remove the select. To match the legacy cost
7386
+ // model, pre-compute the cost for AnyOf reductions here.
7387
+ if (RecurrenceDescriptor::isAnyOfRecurrenceKind (
7388
+ RdxDesc.getRecurrenceKind ())) {
7389
+ auto *Select = cast<SelectInst>(*find_if (
7390
+ RedPhi->users (), [](User *U) { return isa<SelectInst>(U); }));
7391
+ assert (!CostCtx.SkipCostComputation .contains (Select) &&
7392
+ " reduction op visited multiple times" );
7393
+ CostCtx.SkipCostComputation .insert (Select);
7394
+ auto ReductionCost = CostCtx.getLegacyCost (Select, VF);
7395
+ LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7396
+ << " :\n any-of reduction " << *Select << " \n " );
7397
+ Cost += ReductionCost;
7398
+ continue ;
7399
+ }
7400
+
7401
+ const auto &ChainOps = RdxDesc.getReductionOpChain (RedPhi, OrigLoop);
7402
+ SetVector<Instruction *> ChainOpsAndOperands (ChainOps.begin (),
7403
+ ChainOps.end ());
7404
+ // Also include the operands of instructions in the chain, as the cost-model
7405
+ // may mark extends as free.
7406
+ for (auto *ChainOp : ChainOps) {
7407
+ for (Value *Op : ChainOp->operands ()) {
7408
+ if (auto *I = dyn_cast<Instruction>(Op))
7409
+ ChainOpsAndOperands.insert (I);
7410
+ }
7411
+ }
7412
+
7413
+ // Pre-compute the cost for I, if it has a reduction pattern cost.
7414
+ for (Instruction *I : ChainOpsAndOperands) {
7415
+ auto ReductionCost = CM.getReductionPatternCost (
7416
+ I, VF, ToVectorTy (I->getType (), VF), TTI::TCK_RecipThroughput);
7417
+ if (!ReductionCost)
7418
+ continue ;
7419
+
7420
+ assert (!CostCtx.SkipCostComputation .contains (I) &&
7421
+ " reduction op visited multiple times" );
7422
+ CostCtx.SkipCostComputation .insert (I);
7423
+ LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7424
+ << " :\n in-loop reduction " << *I << " \n " );
7425
+ Cost += *ReductionCost;
7426
+ }
7427
+ }
7428
+
7429
+ // Now compute and add the VPlan-based cost.
7430
+ Cost += Plan.cost (VF, CostCtx);
7431
+ LLVM_DEBUG (dbgs () << " Cost for VF " << VF << " : " << Cost << " \n " );
7432
+ return Cost;
7433
+ }
7434
+
7435
+ VPlan &LoopVectorizationPlanner::getBestPlan () const {
7436
+ // If there is a single VPlan with a single VF, return it directly.
7437
+ VPlan &FirstPlan = *VPlans[0 ];
7438
+ if (VPlans.size () == 1 && size (FirstPlan.vectorFactors ()) == 1 )
7439
+ return FirstPlan;
7440
+
7441
+ VPlan *BestPlan = &FirstPlan;
7442
+ ElementCount ScalarVF = ElementCount::getFixed (1 );
7443
+ assert (hasPlanWithVF (ScalarVF) &&
7444
+ " More than a single plan/VF w/o any plan having scalar VF" );
7445
+
7446
+ InstructionCost ScalarCost = cost (getBestPlanFor (ScalarVF), ScalarVF);
7447
+ VectorizationFactor BestFactor (ScalarVF, ScalarCost, ScalarCost);
7448
+
7449
+ bool ForceVectorization = Hints.getForce () == LoopVectorizeHints::FK_Enabled;
7450
+ if (ForceVectorization) {
7451
+ // Ignore scalar width, because the user explicitly wants vectorization.
7452
+ // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7453
+ // evaluation.
7454
+ BestFactor.Cost = InstructionCost::getMax ();
7455
+ }
7456
+
7457
+ for (auto &P : VPlans) {
7458
+ for (ElementCount VF : P->vectorFactors ()) {
7459
+ if (VF.isScalar ())
7460
+ continue ;
7461
+ InstructionCost Cost = cost (*P, VF);
7462
+ VectorizationFactor CurrentFactor (VF, Cost, ScalarCost);
7463
+ if (isMoreProfitable (CurrentFactor, BestFactor)) {
7464
+ BestFactor = CurrentFactor;
7465
+ BestPlan = &*P;
7466
+ }
7467
+ }
7468
+ }
7469
+ BestPlan->setVF (BestFactor.Width );
7470
+ return *BestPlan;
7471
+ }
7472
+
7302
7473
VPlan &LoopVectorizationPlanner::getBestPlanFor (ElementCount VF) const {
7303
7474
assert (count_if (VPlans,
7304
7475
[VF](const VPlanPtr &Plan) { return Plan->hasVF (VF); }) ==
@@ -10157,8 +10328,15 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10157
10328
VF.MinProfitableTripCount , IC, &LVL, &CM, BFI,
10158
10329
PSI, Checks);
10159
10330
10160
- VPlan &BestPlan = LVP.getBestPlanFor (VF.Width );
10161
- LVP.executePlan (VF.Width , IC, BestPlan, LB, DT, false );
10331
+ VPlan &BestPlan = LVP.getBestPlan ();
10332
+ assert (size (BestPlan.vectorFactors ()) == 1 &&
10333
+ " Plan should have a single VF" );
10334
+ ElementCount Width = *BestPlan.vectorFactors ().begin ();
10335
+ LLVM_DEBUG (dbgs () << " VF picked by VPlan cost model: " << Width
10336
+ << " \n " );
10337
+ assert (VF.Width == Width &&
10338
+ " VPlan cost model and legacy cost model disagreed" );
10339
+ LVP.executePlan (Width, IC, BestPlan, LB, DT, false );
10162
10340
++LoopsVectorized;
10163
10341
10164
10342
// Add metadata to disable runtime unrolling a scalar loop when there
0 commit comments