|
| 1 | +; RUN: opt -passes=loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK |
| 2 | +; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK |
| 3 | +; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=1 -S < %s | FileCheck %s --check-prefix=CHECK |
| 4 | + |
| 5 | +; This test can theoretically be vectorized without a runtime-check, by |
| 6 | +; pattern-matching on the constructs that are introduced by IndVarSimplify. |
| 7 | +; We can check two things: |
| 8 | +; %1 = trunc i64 %iv to i32 |
| 9 | +; This indicates that the %iv is truncated to i32. We can then check the loop |
| 10 | +; guard is a signed i32: |
| 11 | +; %cmp.sgt = icmp sgt i32 %n, 0 |
| 12 | +; and successfully vectorize the case without a runtime-check. |
| 13 | +define i32 @select_icmp_const_truncated_iv_widened_exit(ptr %a, i32 %n) { |
| 14 | +; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_widened_exit |
| 15 | +; CHECK-NOT: vector.body: |
| 16 | +; |
| 17 | +entry: |
| 18 | + %cmp.sgt = icmp sgt i32 %n, 0 |
| 19 | + br i1 %cmp.sgt, label %for.body.preheader, label %exit |
| 20 | + |
| 21 | +for.body.preheader: ; preds = %entry |
| 22 | + %wide.trip.count = zext i32 %n to i64 |
| 23 | + br label %for.body |
| 24 | + |
| 25 | +for.body: ; preds = %for.body.preheader, %for.body |
| 26 | + %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] |
| 27 | + %rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ] |
| 28 | + %arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv |
| 29 | + %0 = load i64, ptr %arrayidx, align 8 |
| 30 | + %cmp = icmp sgt i64 %0, 3 |
| 31 | + %1 = trunc i64 %iv to i32 |
| 32 | + %spec.select = select i1 %cmp, i32 %1, i32 %rdx |
| 33 | + %inc = add nuw nsw i64 %iv, 1 |
| 34 | + %exitcond.not = icmp eq i64 %inc, %wide.trip.count |
| 35 | + br i1 %exitcond.not, label %exit, label %for.body |
| 36 | + |
| 37 | +exit: ; preds = %for.body, %entry |
| 38 | + %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 39 | + ret i32 %rdx.lcssa |
| 40 | +} |
| 41 | + |
| 42 | +; This test can theoretically be vectorized without a runtime-check, by |
| 43 | +; pattern-matching on the constructs that are introduced by IndVarSimplify. |
| 44 | +; We can check two things: |
| 45 | +; %1 = trunc i64 %iv to i32 |
| 46 | +; This indicates that the %iv is truncated to i32. We can then check the loop |
| 47 | +; exit condition, which compares to a constant that fits within i32: |
| 48 | +; %exitcond.not = icmp eq i64 %inc, 20000 |
| 49 | +; and successfully vectorize the case without a runtime-check. |
| 50 | +define i32 @select_icmp_const_truncated_iv_const_exit(ptr %a) { |
| 51 | +; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_const_exit |
| 52 | +; CHECK-NOT: vector.body: |
| 53 | +; |
| 54 | +entry: |
| 55 | + br label %for.body |
| 56 | + |
| 57 | +for.body: ; preds = %entry, %for.body |
| 58 | + %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 59 | + %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 60 | + %arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv |
| 61 | + %0 = load i64, ptr %arrayidx, align 8 |
| 62 | + %cmp = icmp sgt i64 %0, 3 |
| 63 | + %1 = trunc i64 %iv to i32 |
| 64 | + %spec.select = select i1 %cmp, i32 %1, i32 %rdx |
| 65 | + %inc = add nuw nsw i64 %iv, 1 |
| 66 | + %exitcond.not = icmp eq i64 %inc, 20000 |
| 67 | + br i1 %exitcond.not, label %exit, label %for.body |
| 68 | + |
| 69 | +exit: ; preds = %for.body |
| 70 | + ret i32 %spec.select |
| 71 | +} |
| 72 | + |
| 73 | +; Without loop guard, the maximum constant trip count that can be vectorized is |
| 74 | +; the signed maximum value of reduction type. |
| 75 | +define i32 @select_fcmp_max_valid_const_ub(ptr %a) { |
| 76 | +; CHECK-LABEL: define i32 @select_fcmp_max_valid_const_ub |
| 77 | +; CHECK-NOT: vector.body: |
| 78 | +; |
| 79 | +entry: |
| 80 | + br label %for.body |
| 81 | + |
| 82 | +for.body: ; preds = %entry, %for.body |
| 83 | + %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 84 | + %rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ] |
| 85 | + %arrayidx = getelementptr inbounds float, ptr %a, i64 %iv |
| 86 | + %0 = load float, ptr %arrayidx, align 4 |
| 87 | + %cmp = fcmp fast olt float %0, 0.000000e+00 |
| 88 | + %1 = trunc i64 %iv to i32 |
| 89 | + %spec.select = select i1 %cmp, i32 %1, i32 %rdx |
| 90 | + %inc = add nuw nsw i64 %iv, 1 |
| 91 | + %exitcond.not = icmp eq i64 %inc, 2147483648 |
| 92 | + br i1 %exitcond.not, label %exit, label %for.body |
| 93 | + |
| 94 | +exit: ; preds = %for.body |
| 95 | + ret i32 %spec.select |
| 96 | +} |
| 97 | + |
| 98 | +; Negative tests |
| 99 | + |
| 100 | +; This test can theoretically be vectorized, but only with a runtime-check. |
| 101 | +; The construct that are introduced by IndVarSimplify is: |
| 102 | +; %1 = trunc i64 %iv to i32 |
| 103 | +; However, the loop guard is an i64: |
| 104 | +; %cmp.sgt = icmp sgt i64 %n, 0 |
| 105 | +; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the |
| 106 | +; sentinel value), and need a runtime-check to vectorize this case. |
| 107 | +define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit(ptr %a, i64 %n) { |
| 108 | +; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit |
| 109 | +; CHECK-NOT: vector.body: |
| 110 | +; |
| 111 | +entry: |
| 112 | + %cmp.sgt = icmp sgt i64 %n, 0 |
| 113 | + br i1 %cmp.sgt, label %for.body, label %exit |
| 114 | + |
| 115 | +for.body: ; preds = %entry, %for.body |
| 116 | + %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 117 | + %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 118 | + %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv |
| 119 | + %0 = load i32, ptr %arrayidx, align 4 |
| 120 | + %cmp = icmp sgt i32 %0, 3 |
| 121 | + %1 = trunc i64 %iv to i32 |
| 122 | + %spec.select = select i1 %cmp, i32 %1, i32 %rdx |
| 123 | + %inc = add nuw nsw i64 %iv, 1 |
| 124 | + %exitcond.not = icmp eq i64 %inc, %n |
| 125 | + br i1 %exitcond.not, label %exit, label %for.body |
| 126 | + |
| 127 | +exit: ; preds = %for.body, %entry |
| 128 | + %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 129 | + ret i32 %rdx.lcssa |
| 130 | +} |
| 131 | + |
| 132 | +; This test can theoretically be vectorized, but only with a runtime-check. |
| 133 | +; The construct that are introduced by IndVarSimplify is: |
| 134 | +; %1 = trunc i64 %iv to i32 |
| 135 | +; However, the loop guard is unsigned: |
| 136 | +; %cmp.not = icmp eq i32 %n, 0 |
| 137 | +; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the |
| 138 | +; sentinel value), and need a runtime-check to vectorize this case. |
| 139 | +define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard(ptr %a, i32 %n) { |
| 140 | +; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard |
| 141 | +; CHECK-NOT: vector.body: |
| 142 | +; |
| 143 | +entry: |
| 144 | + %cmp.not = icmp eq i32 %n, 0 |
| 145 | + br i1 %cmp.not, label %exit, label %for.body.preheader |
| 146 | + |
| 147 | +for.body.preheader: ; preds = %entry |
| 148 | + %wide.trip.count = zext i32 %n to i64 |
| 149 | + br label %for.body |
| 150 | + |
| 151 | +for.body: ; preds = %for.body.preheader, %for.body |
| 152 | + %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] |
| 153 | + %rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ] |
| 154 | + %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv |
| 155 | + %0 = load i32, ptr %arrayidx, align 4 |
| 156 | + %cmp1 = icmp sgt i32 %0, 3 |
| 157 | + %1 = trunc i64 %iv to i32 |
| 158 | + %spec.select = select i1 %cmp1, i32 %1, i32 %rdx |
| 159 | + %inc = add nuw nsw i64 %iv, 1 |
| 160 | + %exitcond.not = icmp eq i64 %inc, %wide.trip.count |
| 161 | + br i1 %exitcond.not, label %exit, label %for.body |
| 162 | + |
| 163 | +exit: ; preds = %for.body, %entry |
| 164 | + %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 165 | + ret i32 %rdx.lcssa |
| 166 | +} |
| 167 | + |
| 168 | +; This test cannot be vectorized, even with a runtime check. |
| 169 | +; The construct that are introduced by IndVarSimplify is: |
| 170 | +; %1 = trunc i64 %iv to i32 |
| 171 | +; However, the loop exit condition is a constant that overflows i32: |
| 172 | +; %exitcond.not = icmp eq i64 %inc, 4294967294 |
| 173 | +; Hence, the i32 will most certainly wrap and hit the sentinel value, and we |
| 174 | +; cannot vectorize this case. |
| 175 | +define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound(ptr %a) { |
| 176 | +; CHECK-LABEL: define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound |
| 177 | +; CHECK-NOT: vector.body: |
| 178 | +; |
| 179 | +entry: |
| 180 | + br label %for.body |
| 181 | + |
| 182 | +for.body: ; preds = %entry, %for.body |
| 183 | + %iv = phi i64 [ 2147483646, %entry ], [ %inc, %for.body ] |
| 184 | + %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] |
| 185 | + %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv |
| 186 | + %0 = load i32, ptr %arrayidx, align 4 |
| 187 | + %cmp = icmp sgt i32 %0, 3 |
| 188 | + %conv = trunc i64 %iv to i32 |
| 189 | + %spec.select = select i1 %cmp, i32 %conv, i32 %rdx |
| 190 | + %inc = add nuw nsw i64 %iv, 1 |
| 191 | + %exitcond.not = icmp eq i64 %inc, 4294967294 |
| 192 | + br i1 %exitcond.not, label %exit, label %for.body |
| 193 | + |
| 194 | +exit: ; preds = %for.body |
| 195 | + ret i32 %spec.select |
| 196 | +} |
| 197 | + |
| 198 | +; Forbidding vectorization of the FindLastIV pattern involving a truncated |
| 199 | +; induction variable in the absence of any loop guard. |
| 200 | +define i32 @not_vectorized_select_iv_icmp_no_guard(ptr %a, ptr %b, i32 %start, i32 %n) { |
| 201 | +; CHECK-LABEL: define i32 @not_vectorized_select_iv_icmp_no_guard |
| 202 | +; CHECK-NOT: vector.body: |
| 203 | +; |
| 204 | +entry: |
| 205 | + %wide.trip.count = zext i32 %n to i64 |
| 206 | + br label %for.body |
| 207 | + |
| 208 | +for.body: ; preds = %entry, %for.body |
| 209 | + %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 210 | + %rdx = phi i32 [ %start, %entry ], [ %cond, %for.body ] |
| 211 | + %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv |
| 212 | + %0 = load i32, ptr %arrayidx, align 4 |
| 213 | + %arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv |
| 214 | + %1 = load i32, ptr %arrayidx2, align 4 |
| 215 | + %cmp = icmp sgt i32 %0, %1 |
| 216 | + %2 = trunc i64 %iv to i32 |
| 217 | + %cond = select i1 %cmp, i32 %2, i32 %rdx |
| 218 | + %inc = add nuw nsw i64 %iv, 1 |
| 219 | + %exitcond.not = icmp eq i64 %inc, %wide.trip.count |
| 220 | + br i1 %exitcond.not, label %exit, label %for.body |
| 221 | + |
| 222 | +exit: ; preds = %for.body |
| 223 | + ret i32 %cond |
| 224 | +} |
| 225 | + |
| 226 | +; Without loop guard, when the constant trip count exceeds the maximum signed |
| 227 | +; value of the reduction type, truncation may cause overflow. Therefore, |
| 228 | +; vectorizer is unable to guarantee that the induction variable is monotonic |
| 229 | +; increasing. |
| 230 | +define i32 @not_vectorized_select_fcmp_invalid_const_ub(ptr %a) { |
| 231 | +; CHECK-LABEL: define i32 @not_vectorized_select_fcmp_invalid_const_ub |
| 232 | +; CHECK-NOT: vector.body: |
| 233 | +; |
| 234 | +entry: |
| 235 | + br label %for.body |
| 236 | + |
| 237 | +for.body: ; preds = %entry, %for.body |
| 238 | + %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 239 | + %rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ] |
| 240 | + %arrayidx = getelementptr inbounds float, ptr %a, i64 %iv |
| 241 | + %0 = load float, ptr %arrayidx, align 4 |
| 242 | + %cmp = fcmp fast olt float %0, 0.000000e+00 |
| 243 | + %1 = trunc i64 %iv to i32 |
| 244 | + %spec.select = select i1 %cmp, i32 %1, i32 %rdx |
| 245 | + %inc = add nuw nsw i64 %iv, 1 |
| 246 | + %exitcond.not = icmp eq i64 %inc, 2147483649 |
| 247 | + br i1 %exitcond.not, label %exit, label %for.body |
| 248 | + |
| 249 | +exit: ; preds = %for.body |
| 250 | + ret i32 %spec.select |
| 251 | +} |
| 252 | + |
| 253 | +; Even with loop guard protection, if the destination type of the truncation |
| 254 | +; instruction is smaller than the trip count type before extension, overflow |
| 255 | +; could still occur. |
| 256 | +define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount(ptr %a, ptr %b, i16 %start, i32 %n) { |
| 257 | +; CHECK-LABEL: define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount |
| 258 | +; CHECK-NOT: vector.body: |
| 259 | +; |
| 260 | +entry: |
| 261 | + %cmp9 = icmp sgt i32 %n, 0 |
| 262 | + br i1 %cmp9, label %for.body.preheader, label %exit |
| 263 | + |
| 264 | +for.body.preheader: ; preds = %entry |
| 265 | + %wide.trip.count = zext i32 %n to i64 |
| 266 | + br label %for.body |
| 267 | + |
| 268 | +for.body: ; preds = %for.body.preheader, %for.body |
| 269 | + %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] |
| 270 | + %rdx = phi i16 [ %start, %for.body.preheader ], [ %cond, %for.body ] |
| 271 | + %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv |
| 272 | + %0 = load i32, ptr %arrayidx, align 4 |
| 273 | + %arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv |
| 274 | + %1 = load i32, ptr %arrayidx2, align 4 |
| 275 | + %cmp3 = icmp sgt i32 %0, %1 |
| 276 | + %2 = trunc i64 %iv to i16 |
| 277 | + %cond = select i1 %cmp3, i16 %2, i16 %rdx |
| 278 | + %inc = add nuw nsw i64 %iv, 1 |
| 279 | + %exitcond.not = icmp eq i64 %inc, %wide.trip.count |
| 280 | + br i1 %exitcond.not, label %exit, label %for.body |
| 281 | + |
| 282 | +exit: ; preds = %for.body, %entry |
| 283 | + %rdx.0.lcssa = phi i16 [ %start, %entry ], [ %cond, %for.body ] |
| 284 | + ret i16 %rdx.0.lcssa |
| 285 | +} |
0 commit comments