Skip to content

Commit b9168b8

Browse files
committed
[libc] Optimize BigInt→decimal in IntegerToString
When IntegerToString converts a BigInt into decimal, it determines each digit by computing `n % 10` and then resets n to `n / 10`, until the number becomes zero. The div and mod operations are done using `BigInt::divide_unsigned`, which uses the simplest possible bit-by-bit iteration, which is a slow algorithm in general, but especially so if the divisor 10 must first be promoted to a BigInt the same size as the dividend. The effect is to make each division take quadratic time, so that the overall decimal conversion is cubic – and the division is quadratic in the number of _bits_, so the constant of proportionality is also large. In this patch I've provided custom code to extract decimal digits much faster, based on knowing that the divisor is always 10, and processing a word at a time. So each digit extraction is linear-time with a much smaller constant of proportionality. Full comments are in the code. The general strategy is to do the reduction mod 10 first to determine the output digit; then subtract it off, so that what's left is guaranteed to be an exact multiple of 10; and finally divide by 10 using modular-arithmetic techniques rather than reciprocal-approximation-based ordinary integer division. I didn't find any existing tests of IntegerToString on a BigInt, so I've added one.
1 parent 61f94eb commit b9168b8

File tree

2 files changed

+218
-1
lines changed

2 files changed

+218
-1
lines changed

libc/src/__support/integer_to_string.h

Lines changed: 172 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,6 +164,168 @@ template <size_t radix> using Custom = details::Fmt<radix>;
164164

165165
} // namespace radix
166166

167+
// Extract the low-order decimal digit from a value of integer type T. The
168+
// returned value is the digit itself, from 0 to 9. The input value is passed
169+
// by reference, and modified by dividing by 10, so that iterating this
170+
// function extracts all the digits of the original number one at a time from
171+
// low to high.
172+
template <typename T, cpp::enable_if_t<cpp::is_integral_v<T>, int> = 0>
173+
LIBC_INLINE uint8_t extract_decimal_digit(T &value) {
174+
const uint8_t digit(static_cast<uint8_t>(value % 10));
175+
// For built-in integer types, we assume that an adequately fast division is
176+
// available. If hardware division isn't implemented, then with a divisor
177+
// known at compile time the compiler might be able to generate an optimized
178+
// sequence instead.
179+
value /= 10;
180+
return digit;
181+
}
182+
183+
// A specialization of extract_decimal_digit for the BigInt type in big_int.h,
184+
// avoiding the use of general-purpose BigInt division which is very slow.
185+
template <typename T, cpp::enable_if_t<is_big_int_v<T>, int> = 0>
186+
LIBC_INLINE uint8_t extract_decimal_digit(T &value) {
187+
// There are two essential ways you can turn n into (n/10,n%10). One is
188+
// ordinary integer division. The other is a modular-arithmetic approach in
189+
// which you first compute n%10 by bit twiddling, then subtract it off to get
190+
// a value that is definitely a multiple of 10. Then you divide that by 10 in
191+
// two steps: shift right to divide off a factor of 2, and then divide off a
192+
// factor of 5 by multiplying by the modular inverse of 5 mod 2^BITS. (That
193+
// last step only works if you know there's no remainder, which is why you
194+
// had to subtract off the output digit first.)
195+
//
196+
// Either approach can be made to work in linear time. This code uses the
197+
// modular-arithmetic technique, because the other approach either does a lot
198+
// of integer divisions (requiring a fast hardware divider), or else uses a
199+
// "multiply by an approximation to the reciprocal" technique which depends
200+
// on careful error analysis which might go wrong in an untested edge case.
201+
202+
using Word = typename T::word_type;
203+
204+
// Find the remainder (value % 10). We do this by breaking up the input
205+
// integer into chunks of size WORD_SIZE/2, so that the sum of them doesn't
206+
// overflow a Word. Then we sum all the half-words times 6, except the bottom
207+
// one, which is added to that sum without scaling.
208+
//
209+
// Why 6? Because you can imagine that the original number had the form
210+
//
211+
// halfwords[0] + K*halfwords[1] + K^2*halfwords[2] + ...
212+
//
213+
// where K = 2^(WORD_SIZE/2). Since WORD_SIZE is expected to be a multiple of
214+
// 8, that makes WORD_SIZE/2 a multiple of 4, so that K is a power of 16. And
215+
// all powers of 16 (larger than 1) are congruent to 6 mod 10, by induction:
216+
// 16 itself is, and 6^2=36 is also congruent to 6.
217+
Word acc_remainder = 0;
218+
const Word HALFWORD_BITS = T::WORD_SIZE / 2;
219+
const Word HALFWORD_MASK = ((Word(1) << HALFWORD_BITS) - 1);
220+
// Sum both halves of all words except the low one.
221+
for (size_t i = 1; i < T::WORD_COUNT; i++) {
222+
acc_remainder += value.val[i] >> HALFWORD_BITS;
223+
acc_remainder += value.val[i] & HALFWORD_MASK;
224+
}
225+
// Add the high half of the low word. Then we have everything that needs to
226+
// be multiplied by 6, so do that.
227+
acc_remainder += value.val[0] >> HALFWORD_BITS;
228+
acc_remainder *= 6;
229+
// Having multiplied it by 6, add the lowest half-word, and then reduce mod
230+
// 10 by normal integer division to finish.
231+
acc_remainder += value.val[0] & HALFWORD_MASK;
232+
uint8_t digit = acc_remainder % 10;
233+
234+
// Now we have the output digit. Subtract it from the input value, and shift
235+
// right to divide by 2.
236+
value -= digit;
237+
value >>= 1;
238+
239+
// Now all that's left is to multiply by the inverse of 5 mod 2^BITS. No
240+
// matter what the value of BITS, the inverse of 5 has the very convenient
241+
// form 0xCCCC...CCCD, with as many C hex digits in the middle as necessary.
242+
//
243+
// We could construct a second BigInt with all words 0xCCCCCCCCCCCCCCCC,
244+
// increment the bottom word, and call a general-purpose multiply function.
245+
// But we can do better, by taking advantage of the regularity: we can do
246+
// this particular operation in linear time, whereas a general multiplier
247+
// would take superlinear time (quadratic in small cases).
248+
//
249+
// To begin with, instead of computing n*0xCCCC...CCCD, we'll compute
250+
// n*0xCCCC...CCCC and then add it to the original n. Then all the words of
251+
// the multiplier have the same value 0xCCCCCCCCCCCCCCCC, which I'll just
252+
// denote as C. If we also write t = 2^WORD_SIZE, and imagine (as an example)
253+
// that the input number has three words x,y,z with x being the low word,
254+
// then we're computing
255+
//
256+
// (x + y t + z t^2) * (C + C t + C t^2)
257+
//
258+
// = x C + y C t + z C t^2
259+
// + x C t + y C t^2 + z C t^3
260+
// + x C t^2 + y C t^3 + z C t^4
261+
//
262+
// but we're working mod t^3, so the high-order terms vanish and this becomes
263+
//
264+
// x C + y C t + z C t^2
265+
// + x C t + y C t^2
266+
// + x C t^2
267+
//
268+
// = x C + (x+y) C t + (x+y+z) C t^2
269+
//
270+
// So all you have to do is to work from the low word of the integer upwards,
271+
// accumulating C times the sum of all the words you've seen so far to get
272+
// x*C, (x+y)*C, (x+y+z)*C and so on. In each step you add another product to
273+
// the accumulator, and add the accumulator to the corresponding word of the
274+
// original number (so that we end up with value*CCCD, not just value*CCCC).
275+
//
276+
// If you do that literally, then your accumulator has to be three words
277+
// wide, because the sum of words can overflow into a second word, and
278+
// multiplying by C adds another word. But we can do slightly better by
279+
// breaking each product word*C up into a bottom half and a top half. If we
280+
// write x*C = xl + xh*t, and similarly for y and z, then our sum becomes
281+
//
282+
// (xl + xh t) + (yl + yh t) t + (zl + zh t) t^2
283+
// + (xl + xh t) t + (yl + yh t) t^2
284+
// + (xl + xh t) t^2
285+
//
286+
// and if you expand out again, collect terms, and discard t^3 terms, you get
287+
//
288+
// (xl)
289+
// + (xl + xh + yl) t
290+
// + (xl + xh + yl + yh + zl) t^2
291+
//
292+
// in which each coefficient is the sum of all the low words of the products
293+
// up to _and including_ the current word, plus all the high words up to but
294+
// _not_ including the current word. So now you only have to retain two words
295+
// of sum instead of three.
296+
//
297+
// We do this entire procedure in a single in-place pass over the input
298+
// number, reading each word to make its product with C and then adding the
299+
// low word of the accumulator to it.
300+
const Word C = (Word(0) - 1) / 5 * 4; // calculate 0xCCCC as 4/5 of 0xFFFF
301+
Word acc_lo = 0, acc_hi = 0; // accumulator of all the half-products so far
302+
Word carry_bit, carry_word = 0;
303+
304+
for (size_t i = 0; i < T::WORD_COUNT; i++) {
305+
// Make the two-word product of C with the current input word.
306+
multiword::DoubleWide<Word> product = multiword::mul2(C, value.val[i]);
307+
308+
// Add the low half of the product to our accumulator, but not yet the high
309+
// half.
310+
acc_lo = add_with_carry<Word>(acc_lo, product[0], 0, carry_bit);
311+
acc_hi += carry_bit;
312+
313+
// Now the accumulator contains exactly the value we need to add to the
314+
// current input word. Add it, plus any carries from lower words, and make
315+
// a new word of carry data to propagate into the next iteration.
316+
value.val[i] = add_with_carry<Word>(value.val[i], carry_word, 0, carry_bit);
317+
carry_word = acc_hi + carry_bit;
318+
value.val[i] = add_with_carry<Word>(value.val[i], acc_lo, 0, carry_bit);
319+
carry_word += carry_bit;
320+
321+
// Now add the high half of the current product to our accumulator.
322+
acc_lo = add_with_carry<Word>(acc_lo, product[1], 0, carry_bit);
323+
acc_hi += carry_bit;
324+
}
325+
326+
return digit;
327+
}
328+
167329
// See file header for documentation.
168330
template <typename T, typename Fmt = radix::Dec> class IntegerToString {
169331
static_assert(cpp::is_integral_v<T> || is_big_int_v<T>);
@@ -229,6 +391,15 @@ template <typename T, typename Fmt = radix::Dec> class IntegerToString {
229391
}
230392
}
231393

394+
LIBC_INLINE static void
395+
write_unsigned_number_dec(UNSIGNED_T value,
396+
details::BackwardStringBufferWriter &sink) {
397+
while (sink.ok() && value != 0) {
398+
const uint8_t digit = extract_decimal_digit(value);
399+
sink.push(digit_char(digit));
400+
}
401+
}
402+
232403
// Returns the absolute value of 'value' as 'UNSIGNED_T'.
233404
LIBC_INLINE static UNSIGNED_T abs(T value) {
234405
if (cpp::is_unsigned_v<T> || value >= 0)
@@ -256,7 +427,7 @@ template <typename T, typename Fmt = radix::Dec> class IntegerToString {
256427
LIBC_INLINE static void write(T value,
257428
details::BackwardStringBufferWriter &sink) {
258429
if constexpr (Fmt::BASE == 10) {
259-
write_unsigned_number(abs(value), sink);
430+
write_unsigned_number_dec(abs(value), sink);
260431
} else {
261432
write_unsigned_number(static_cast<UNSIGNED_T>(value), sink);
262433
}

libc/test/src/__support/integer_to_string_test.cpp

Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,7 @@
1616

1717
#include "test/UnitTest/Test.h"
1818

19+
using LIBC_NAMESPACE::BigInt;
1920
using LIBC_NAMESPACE::IntegerToString;
2021
using LIBC_NAMESPACE::cpp::span;
2122
using LIBC_NAMESPACE::cpp::string_view;
@@ -297,6 +298,51 @@ TEST(LlvmLibcIntegerToStringTest, Sign) {
297298
EXPECT(DEC, 1, "+1");
298299
}
299300

301+
TEST(LlvmLibcIntegerToStringTest, BigInt_Base_10) {
302+
uint64_t uint256_max[4] = {
303+
0xFFFFFFFFFFFFFFFF,
304+
0xFFFFFFFFFFFFFFFF,
305+
0xFFFFFFFFFFFFFFFF,
306+
0xFFFFFFFFFFFFFFFF,
307+
};
308+
uint64_t int256_max[4] = {
309+
0xFFFFFFFFFFFFFFFF,
310+
0xFFFFFFFFFFFFFFFF,
311+
0xFFFFFFFFFFFFFFFF,
312+
0x7FFFFFFFFFFFFFFF,
313+
};
314+
uint64_t int256_min[4] = {
315+
0,
316+
0,
317+
0,
318+
0x8000000000000000,
319+
};
320+
321+
using unsigned_type = IntegerToString<BigInt<256, false>, Dec>;
322+
EXPECT(unsigned_type, 0, "0");
323+
EXPECT(unsigned_type, 1, "1");
324+
EXPECT(unsigned_type, uint256_max,
325+
"115792089237316195423570985008687907853269984665640564039457584007913"
326+
"129639935");
327+
EXPECT(unsigned_type, int256_max,
328+
"578960446186580977117854925043439539266349923328202820197287920039565"
329+
"64819967");
330+
EXPECT(unsigned_type, int256_min,
331+
"578960446186580977117854925043439539266349923328202820197287920039565"
332+
"64819968");
333+
334+
using signed_type = IntegerToString<BigInt<256, true>, Dec>;
335+
EXPECT(signed_type, 0, "0");
336+
EXPECT(signed_type, 1, "1");
337+
EXPECT(signed_type, uint256_max, "-1");
338+
EXPECT(signed_type, int256_max,
339+
"578960446186580977117854925043439539266349923328202820197287920039565"
340+
"64819967");
341+
EXPECT(signed_type, int256_min,
342+
"-57896044618658097711785492504343953926634992332820282019728792003956"
343+
"564819968");
344+
}
345+
300346
TEST(LlvmLibcIntegerToStringTest, BufferOverrun) {
301347
{ // Writing '0' in an empty buffer requiring zero digits : works
302348
const auto view =

0 commit comments

Comments
 (0)