|
| 1 | +//===-- EfficiencySanitizer.cpp - performance tuner -----------------------===// |
| 2 | +// |
| 3 | +// The LLVM Compiler Infrastructure |
| 4 | +// |
| 5 | +// This file is distributed under the University of Illinois Open Source |
| 6 | +// License. See LICENSE.TXT for details. |
| 7 | +// |
| 8 | +//===----------------------------------------------------------------------===// |
| 9 | +// |
| 10 | +// This file is a part of EfficiencySanitizer, a family of performance tuners |
| 11 | +// that detects multiple performance issues via separate sub-tools. |
| 12 | +// |
| 13 | +// The instrumentation phase is straightforward: |
| 14 | +// - Take action on every memory access: either inlined instrumentation, |
| 15 | +// or Inserted calls to our run-time library. |
| 16 | +// - Optimizations may apply to avoid instrumenting some of the accesses. |
| 17 | +// - Turn mem{set,cpy,move} instrinsics into library calls. |
| 18 | +// The rest is handled by the run-time library. |
| 19 | +//===----------------------------------------------------------------------===// |
| 20 | + |
| 21 | +#include "llvm/Transforms/Instrumentation.h" |
| 22 | +#include "llvm/ADT/SmallString.h" |
| 23 | +#include "llvm/ADT/SmallVector.h" |
| 24 | +#include "llvm/ADT/Statistic.h" |
| 25 | +#include "llvm/ADT/StringExtras.h" |
| 26 | +#include "llvm/IR/Function.h" |
| 27 | +#include "llvm/IR/IRBuilder.h" |
| 28 | +#include "llvm/IR/IntrinsicInst.h" |
| 29 | +#include "llvm/IR/Module.h" |
| 30 | +#include "llvm/IR/Type.h" |
| 31 | +#include "llvm/Support/CommandLine.h" |
| 32 | +#include "llvm/Support/Debug.h" |
| 33 | +#include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 34 | +#include "llvm/Transforms/Utils/ModuleUtils.h" |
| 35 | + |
| 36 | +using namespace llvm; |
| 37 | + |
| 38 | +#define DEBUG_TYPE "esan" |
| 39 | + |
| 40 | +// The tool type must be just one of these ClTool* options, as the tools |
| 41 | +// cannot be combined due to shadow memory constraints. |
| 42 | +static cl::opt<bool> |
| 43 | + ClToolCacheFrag("esan-cache-frag", cl::init(false), |
| 44 | + cl::desc("Detect data cache fragmentation"), cl::Hidden); |
| 45 | +// Each new tool will get its own opt flag here. |
| 46 | +// These are converted to EfficiencySanitizerOptions for use |
| 47 | +// in the code. |
| 48 | + |
| 49 | +static cl::opt<bool> ClInstrumentLoadsAndStores( |
| 50 | + "esan-instrument-loads-and-stores", cl::init(true), |
| 51 | + cl::desc("Instrument loads and stores"), cl::Hidden); |
| 52 | +static cl::opt<bool> ClInstrumentMemIntrinsics( |
| 53 | + "esan-instrument-memintrinsics", cl::init(true), |
| 54 | + cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); |
| 55 | + |
| 56 | +STATISTIC(NumInstrumentedLoads, "Number of instrumented loads"); |
| 57 | +STATISTIC(NumInstrumentedStores, "Number of instrumented stores"); |
| 58 | +STATISTIC(NumFastpaths, "Number of instrumented fastpaths"); |
| 59 | +STATISTIC(NumAccessesWithIrregularSize, |
| 60 | + "Number of accesses with a size outside our targeted callout sizes"); |
| 61 | + |
| 62 | +static const char *const EsanModuleCtorName = "esan.module_ctor"; |
| 63 | +static const char *const EsanInitName = "__esan_init"; |
| 64 | + |
| 65 | +namespace { |
| 66 | + |
| 67 | +static EfficiencySanitizerOptions |
| 68 | +OverrideOptionsFromCL(EfficiencySanitizerOptions Options) { |
| 69 | + if (ClToolCacheFrag) |
| 70 | + Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; |
| 71 | + |
| 72 | + // Direct opt invocation with no params will have the default ESAN_None. |
| 73 | + // We run the default tool in that case. |
| 74 | + if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None) |
| 75 | + Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; |
| 76 | + |
| 77 | + return Options; |
| 78 | +} |
| 79 | + |
| 80 | +/// EfficiencySanitizer: instrument each module to find performance issues. |
| 81 | +class EfficiencySanitizer : public FunctionPass { |
| 82 | +public: |
| 83 | + EfficiencySanitizer( |
| 84 | + const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions()) |
| 85 | + : FunctionPass(ID), Options(OverrideOptionsFromCL(Opts)) {} |
| 86 | + const char *getPassName() const override; |
| 87 | + bool runOnFunction(Function &F) override; |
| 88 | + bool doInitialization(Module &M) override; |
| 89 | + static char ID; |
| 90 | + |
| 91 | +private: |
| 92 | + void initializeCallbacks(Module &M); |
| 93 | + bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); |
| 94 | + bool instrumentMemIntrinsic(MemIntrinsic *MI); |
| 95 | + bool shouldIgnoreMemoryAccess(Instruction *I); |
| 96 | + int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); |
| 97 | + bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore, |
| 98 | + Value *Addr, unsigned Alignment); |
| 99 | + // Each tool has its own fastpath routine: |
| 100 | + bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL, |
| 101 | + Value *Addr, unsigned Alignment); |
| 102 | + |
| 103 | + EfficiencySanitizerOptions Options; |
| 104 | + LLVMContext *Ctx; |
| 105 | + Type *IntptrTy; |
| 106 | + // Our slowpath involves callouts to the runtime library. |
| 107 | + // Access sizes are powers of two: 1, 2, 4, 8, 16. |
| 108 | + static const size_t NumberOfAccessSizes = 5; |
| 109 | + Function *EsanAlignedLoad[NumberOfAccessSizes]; |
| 110 | + Function *EsanAlignedStore[NumberOfAccessSizes]; |
| 111 | + Function *EsanUnalignedLoad[NumberOfAccessSizes]; |
| 112 | + Function *EsanUnalignedStore[NumberOfAccessSizes]; |
| 113 | + // For irregular sizes of any alignment: |
| 114 | + Function *EsanUnalignedLoadN, *EsanUnalignedStoreN; |
| 115 | + Function *MemmoveFn, *MemcpyFn, *MemsetFn; |
| 116 | + Function *EsanCtorFunction; |
| 117 | +}; |
| 118 | +} // namespace |
| 119 | + |
| 120 | +char EfficiencySanitizer::ID = 0; |
| 121 | +INITIALIZE_PASS(EfficiencySanitizer, "esan", |
| 122 | + "EfficiencySanitizer: finds performance issues.", false, false) |
| 123 | + |
| 124 | +const char *EfficiencySanitizer::getPassName() const { |
| 125 | + return "EfficiencySanitizer"; |
| 126 | +} |
| 127 | + |
| 128 | +FunctionPass * |
| 129 | +llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) { |
| 130 | + return new EfficiencySanitizer(Options); |
| 131 | +} |
| 132 | + |
| 133 | +void EfficiencySanitizer::initializeCallbacks(Module &M) { |
| 134 | + IRBuilder<> IRB(M.getContext()); |
| 135 | + // Initialize the callbacks. |
| 136 | + for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) { |
| 137 | + const unsigned ByteSize = 1U << Idx; |
| 138 | + std::string ByteSizeStr = utostr(ByteSize); |
| 139 | + // We'll inline the most common (i.e., aligned and frequent sizes) |
| 140 | + // load + store instrumentation: these callouts are for the slowpath. |
| 141 | + SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr); |
| 142 | + EsanAlignedLoad[Idx] = |
| 143 | + checkSanitizerInterfaceFunction(M.getOrInsertFunction( |
| 144 | + AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); |
| 145 | + SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr); |
| 146 | + EsanAlignedStore[Idx] = |
| 147 | + checkSanitizerInterfaceFunction(M.getOrInsertFunction( |
| 148 | + AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); |
| 149 | + SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr); |
| 150 | + EsanUnalignedLoad[Idx] = |
| 151 | + checkSanitizerInterfaceFunction(M.getOrInsertFunction( |
| 152 | + UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); |
| 153 | + SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr); |
| 154 | + EsanUnalignedStore[Idx] = |
| 155 | + checkSanitizerInterfaceFunction(M.getOrInsertFunction( |
| 156 | + UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); |
| 157 | + } |
| 158 | + EsanUnalignedLoadN = checkSanitizerInterfaceFunction( |
| 159 | + M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(), |
| 160 | + IRB.getInt8PtrTy(), IntptrTy, nullptr)); |
| 161 | + EsanUnalignedStoreN = checkSanitizerInterfaceFunction( |
| 162 | + M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(), |
| 163 | + IRB.getInt8PtrTy(), IntptrTy, nullptr)); |
| 164 | + MemmoveFn = checkSanitizerInterfaceFunction( |
| 165 | + M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| 166 | + IRB.getInt8PtrTy(), IntptrTy, nullptr)); |
| 167 | + MemcpyFn = checkSanitizerInterfaceFunction( |
| 168 | + M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| 169 | + IRB.getInt8PtrTy(), IntptrTy, nullptr)); |
| 170 | + MemsetFn = checkSanitizerInterfaceFunction( |
| 171 | + M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| 172 | + IRB.getInt32Ty(), IntptrTy, nullptr)); |
| 173 | +} |
| 174 | + |
| 175 | +bool EfficiencySanitizer::doInitialization(Module &M) { |
| 176 | + Ctx = &M.getContext(); |
| 177 | + const DataLayout &DL = M.getDataLayout(); |
| 178 | + IRBuilder<> IRB(M.getContext()); |
| 179 | + IntegerType *OrdTy = IRB.getInt32Ty(); |
| 180 | + IntptrTy = DL.getIntPtrType(M.getContext()); |
| 181 | + std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( |
| 182 | + M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy}, |
| 183 | + /*InitArgs=*/{ |
| 184 | + ConstantInt::get(OrdTy, static_cast<int>(Options.ToolType))}); |
| 185 | + |
| 186 | + appendToGlobalCtors(M, EsanCtorFunction, 0); |
| 187 | + |
| 188 | + return true; |
| 189 | +} |
| 190 | + |
| 191 | +bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) { |
| 192 | + if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { |
| 193 | + // We'd like to know about cache fragmentation in vtable accesses and |
| 194 | + // constant data references, so we do not currently ignore anything. |
| 195 | + return false; |
| 196 | + } |
| 197 | + // TODO(bruening): future tools will be returning true for some cases. |
| 198 | + return false; |
| 199 | +} |
| 200 | + |
| 201 | +bool EfficiencySanitizer::runOnFunction(Function &F) { |
| 202 | + // This is required to prevent instrumenting the call to __esan_init from |
| 203 | + // within the module constructor. |
| 204 | + if (&F == EsanCtorFunction) |
| 205 | + return false; |
| 206 | + // As a function pass, we must re-initialize every time. |
| 207 | + initializeCallbacks(*F.getParent()); |
| 208 | + SmallVector<Instruction *, 8> LoadsAndStores; |
| 209 | + SmallVector<Instruction *, 8> MemIntrinCalls; |
| 210 | + bool Res = false; |
| 211 | + const DataLayout &DL = F.getParent()->getDataLayout(); |
| 212 | + |
| 213 | + for (auto &BB : F) { |
| 214 | + for (auto &Inst : BB) { |
| 215 | + if ((isa<LoadInst>(Inst) || isa<StoreInst>(Inst) || |
| 216 | + isa<AtomicRMWInst>(Inst) || isa<AtomicCmpXchgInst>(Inst)) && |
| 217 | + !shouldIgnoreMemoryAccess(&Inst)) |
| 218 | + LoadsAndStores.push_back(&Inst); |
| 219 | + else if (isa<MemIntrinsic>(Inst)) |
| 220 | + MemIntrinCalls.push_back(&Inst); |
| 221 | + } |
| 222 | + } |
| 223 | + |
| 224 | + if (ClInstrumentLoadsAndStores) { |
| 225 | + for (auto Inst : LoadsAndStores) { |
| 226 | + Res |= instrumentLoadOrStore(Inst, DL); |
| 227 | + } |
| 228 | + } |
| 229 | + |
| 230 | + if (ClInstrumentMemIntrinsics) { |
| 231 | + for (auto Inst : MemIntrinCalls) { |
| 232 | + Res |= instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); |
| 233 | + } |
| 234 | + } |
| 235 | + |
| 236 | + return Res; |
| 237 | +} |
| 238 | + |
| 239 | +bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I, |
| 240 | + const DataLayout &DL) { |
| 241 | + IRBuilder<> IRB(I); |
| 242 | + bool IsStore; |
| 243 | + Value *Addr; |
| 244 | + unsigned Alignment; |
| 245 | + if (LoadInst *Load = dyn_cast<LoadInst>(I)) { |
| 246 | + IsStore = false; |
| 247 | + Alignment = Load->getAlignment(); |
| 248 | + Addr = Load->getPointerOperand(); |
| 249 | + } else if (StoreInst *Store = dyn_cast<StoreInst>(I)) { |
| 250 | + IsStore = true; |
| 251 | + Alignment = Store->getAlignment(); |
| 252 | + Addr = Store->getPointerOperand(); |
| 253 | + } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| 254 | + IsStore = true; |
| 255 | + Alignment = 0; |
| 256 | + Addr = RMW->getPointerOperand(); |
| 257 | + } else if (AtomicCmpXchgInst *Xchg = dyn_cast<AtomicCmpXchgInst>(I)) { |
| 258 | + IsStore = true; |
| 259 | + Alignment = 0; |
| 260 | + Addr = Xchg->getPointerOperand(); |
| 261 | + } else |
| 262 | + llvm_unreachable("Unsupported mem access type"); |
| 263 | + |
| 264 | + Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); |
| 265 | + const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; |
| 266 | + Value *OnAccessFunc = nullptr; |
| 267 | + if (IsStore) |
| 268 | + NumInstrumentedStores++; |
| 269 | + else |
| 270 | + NumInstrumentedLoads++; |
| 271 | + int Idx = getMemoryAccessFuncIndex(Addr, DL); |
| 272 | + if (Idx < 0) { |
| 273 | + OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN; |
| 274 | + IRB.CreateCall(OnAccessFunc, |
| 275 | + {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), |
| 276 | + ConstantInt::get(IntptrTy, TypeSizeBytes)}); |
| 277 | + } else { |
| 278 | + if (instrumentFastpath(I, DL, IsStore, Addr, Alignment)) { |
| 279 | + NumFastpaths++; |
| 280 | + return true; |
| 281 | + } |
| 282 | + if (Alignment == 0 || Alignment >= 8 || (Alignment % TypeSizeBytes) == 0) |
| 283 | + OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx]; |
| 284 | + else |
| 285 | + OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx]; |
| 286 | + IRB.CreateCall(OnAccessFunc, |
| 287 | + IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); |
| 288 | + } |
| 289 | + return true; |
| 290 | +} |
| 291 | + |
| 292 | +// It's simplest to replace the memset/memmove/memcpy intrinsics with |
| 293 | +// calls that the runtime library intercepts. |
| 294 | +// Our pass is late enough that calls should not turn back into intrinsics. |
| 295 | +bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| 296 | + IRBuilder<> IRB(MI); |
| 297 | + bool Res = false; |
| 298 | + if (isa<MemSetInst>(MI)) { |
| 299 | + IRB.CreateCall( |
| 300 | + MemsetFn, |
| 301 | + {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), |
| 302 | + IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false), |
| 303 | + IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); |
| 304 | + MI->eraseFromParent(); |
| 305 | + Res = true; |
| 306 | + } else if (isa<MemTransferInst>(MI)) { |
| 307 | + IRB.CreateCall( |
| 308 | + isa<MemCpyInst>(MI) ? MemcpyFn : MemmoveFn, |
| 309 | + {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), |
| 310 | + IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()), |
| 311 | + IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); |
| 312 | + MI->eraseFromParent(); |
| 313 | + Res = true; |
| 314 | + } else |
| 315 | + llvm_unreachable("Unsupported mem intrinsic type"); |
| 316 | + return Res; |
| 317 | +} |
| 318 | + |
| 319 | +int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr, |
| 320 | + const DataLayout &DL) { |
| 321 | + Type *OrigPtrTy = Addr->getType(); |
| 322 | + Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); |
| 323 | + assert(OrigTy->isSized()); |
| 324 | + // The size is always a multiple of 8. |
| 325 | + uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; |
| 326 | + if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 && |
| 327 | + TypeSizeBytes != 8 && TypeSizeBytes != 16) { |
| 328 | + // Irregular sizes do not have per-size call targets. |
| 329 | + NumAccessesWithIrregularSize++; |
| 330 | + return -1; |
| 331 | + } |
| 332 | + size_t Idx = countTrailingZeros(TypeSizeBytes); |
| 333 | + assert(Idx < NumberOfAccessSizes); |
| 334 | + return Idx; |
| 335 | +} |
| 336 | + |
| 337 | +bool EfficiencySanitizer::instrumentFastpath(Instruction *I, |
| 338 | + const DataLayout &DL, bool IsStore, |
| 339 | + Value *Addr, unsigned Alignment) { |
| 340 | + if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { |
| 341 | + return instrumentFastpathCacheFrag(I, DL, Addr, Alignment); |
| 342 | + } |
| 343 | + return false; |
| 344 | +} |
| 345 | + |
| 346 | +bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I, |
| 347 | + const DataLayout &DL, |
| 348 | + Value *Addr, |
| 349 | + unsigned Alignment) { |
| 350 | + // TODO(bruening): implement a fastpath for aligned accesses |
| 351 | + return false; |
| 352 | +} |
0 commit comments